Skip to main content

Advertisement

Log in

Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne–Stokes respiration compared to healthy volunteers

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

This study investigated the haemodynamic effects of adaptive servoventilation (ASV) in heart failure (HF) patients with Cheyne–Stokes respiration (CSR) versus healthy controls. Twenty-seven HF patients with CSR and 15 volunteers were ventilated for 1 h using a new ASV device (PaceWave™). Haemodynamics were continuously and non-invasively recorded at baseline, during ASV and after ventilation. Prior to the actual study, a small validation study was performed to validate non-invasive measurement of Stroke volume index (SVI). Non-invasive measurement of SVI showed a marginal overall difference of −0.03 ± 0.41 L/min/m2 compared to the current gold standard (Thermodilution-based measurement). Stroke volume index (SVI) increased during ASV in HF patients (29.7 ± 5 to 30.4 ± 6 to 28.7 ± 5 mL/m2, p < 0.05) and decreased slightly in volunteers (50.7 ± 12 to 48.6 ± 11 to 47.9 ± 12 mL/m2). Simultaneously, 1 h of ASV was associated with a trend towards an increase in parasympathetic nervous activity (PNA) in HF patients and a trend towards an increase in sympathetic nervous activity (SNA) in healthy volunteers. Blood pressure (BP) and total peripheral resistance response increased significantly in both groups, despite marked inter-individual variation. Effects were independent of vigilance. Predictors of increased SVI during ASV in HF patients included preserved right ventricular function, normal resting BP, non-ischaemic HF aetiology, mitral regurgitation and increased left ventricular filling pressures. This study confirms favourable haemodynamic effects of ASV in HF patients with CSR presenting with mitral regurgitation and/or increased left ventricular filling pressures, but also identified a number of new predictors. This might be mediated by a shift towards more parasympathetic nervous activity in those patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oldenburg O, Lamp B, Faber L, Teschler H, Horstkotte D, Töpfer V (2007) Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 9:251–257

    Article  PubMed  Google Scholar 

  2. Naughton MT (1998) Pathophysiology and treatment of Cheyne–Stokes respiration. Thorax 53:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, Levy P, Simonds A, Somers VK, Zannad F, Teschler H (2013) Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure. Eur J Heart Fail 15:937–943

    Article  PubMed  PubMed Central  Google Scholar 

  4. Javaheri S, Shukla R, Zeigler H, Wexler L (2007) Central sleep apnoea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol 20:2028–2034

    Article  Google Scholar 

  5. Jilek C, Krenn M, Sebah D, Obermeier R, Braune A, Kehl V, Schroll S, Montalvan S, Riegger GA, Pfeifer M, Arzt M (2011) Prognostic impact of sleep disordered breathing and its treatment in heart failure: an observational study. Eur J Heart Fail 1:68–75

    Article  Google Scholar 

  6. Teschler H, Döhring J, Wang YM, Berthon-Jones M (2001) Adaptive pressure support servo-ventilation: a novel treatment for Cheyne–Stokes respiration in heart failure. Am J Resp Crit Care Med 164:614–619

    Article  CAS  PubMed  Google Scholar 

  7. Spießhöfer J, Heinrich J, Lehmann R, Efken C, Fox H, Bitter T, Körber B, Horstkotte D, Oldenburg O (2015) Respiratory effects of adaptive servoventilation therapy in patients with heart failure and Cheyne–Stokes respiration compared to healthy volunteers. Respiration 89:374–382

    Article  PubMed  Google Scholar 

  8. Oldenburg O, Spießhöfer J, Fox H, Prib N, Horstkotte D (2014) Performance of conventional and enhanced adaptive servoventilation (ASV) in heart failure patients with central sleep apnea who have adapted to conventional ASV. Sleep Breath (epub ahead of print)

  9. Haruki N, Takeuchi M, Kaku K, Yoshitani H, Kuwaki H, Tamura M, Abe H, Okazaki M, Tsutsumi A, Otsuji Y (2011) Comparison of acute and chronic impact of adaptive servo-ventilation on left chamber geometry and function in patients with chronic heart failure. Eur J Heart Fail 13:1140–1146

    Article  PubMed  Google Scholar 

  10. Valipour A, Schneider F, Koessler W, Saliba S, Burghuber OC (2005) Heart rate variability and spontaneous baroreflex sequences in supine healthy volunteers subjected to nasal positive airway pressure. J Appl Physiol 99:2137–2143

    Article  PubMed  Google Scholar 

  11. Luecke T, Pelosi P (2005) Clinical review: positive end-expiratory pressure and cardiac output. Crit Care 9:607–621

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kiely JL, Deegan P, Buckley A, Shiels P, Maurer B, McNicholas WT (1998) Efficacy of nasal continuous positive airway pressure therapy in chronic heart failure: importance of underlying cardiac rhythm. Thorax 53:957–962

  13. Yamada S, Sakakibara M, Yokota T, Kamiya K, Asakawa N, Iwano H, Yamada S, Oba K, Tsutsui H (2013) Acute haemodynamic effects of adaptive servo-ventilation in patients with heart failure. Circ J 77(5):1214–1220

    Article  PubMed  Google Scholar 

  14. Yoshida M, Kadokami T, Momii H, Hayashi A, Urashi T, Narita S, Kawamura N, Ando S (2012) Enhancement of cardiac performance by bilevel positive airway pressure ventilation in heart failure. J Card Fail 18:912–918

    Article  PubMed  Google Scholar 

  15. Aurora RN, Chowdhuri S, Ramar K, Bista SR, Casey KR, Lamm CI, Kristo DA, Mallea JM, Rowley JA, Zak RS, Tracy SL (2012) The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep 35:17–40

    PubMed  PubMed Central  Google Scholar 

  16. Montner PK, Greene ER, Murata GH, Stark DM, Timms M, Chick TW (1994) Hemodynamic effects of nasal and face mask continuous positive airway pressure. Am J Respir Crit Care Med 149:1614–1618

    Article  CAS  PubMed  Google Scholar 

  17. Liston R, Deegan PC, McCreery C, Costello R, Maurer B, McNicholas WT (1998) Haemodynamic effects of nasal continuous positive airway pressure in severe congestive heart failure. Eur Respir J 8:430–435

    Article  Google Scholar 

  18. Heindl S, Dodt C, Krahwinkel M, Hasenfuss G, Andreas S (2001) Short term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart 2:185–190

    Article  Google Scholar 

  19. Oldenburg O, Bartsch S, Bitter T, Schmalgemeier H, Fischbach T, Westerheide N, Horstkotte D (2011) Hypotensive effects of positive airway pressure ventilation in heart failure patients with sleep-disordered breathing. Sleep Breath 16:753–757

    Article  PubMed  Google Scholar 

  20. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 8:597–619

    PubMed  PubMed Central  Google Scholar 

  21. Gratze G, Fortin J, Holler A, Grasenick K, Pfurtscheller G, Wach P, Schönegger J, Kotanko P, Skrabal F (1998) A software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Comput Biol Med 2:121–142

    Article  Google Scholar 

  22. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiograph 10(2):165–193

    Article  Google Scholar 

  23. De Sutter J, De Backer J, Van de Veire N, Velghe A, De Buyzere M, Gillebert TC (2005) Effects of age, gender, and left ventricular mass on septal mitral annulus velocity (E′) and the ratio of transmitral early peak velocity to E′ (E/E′). Am J Cardiol 95:1020

  24. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W; American Society of Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

  25. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

  26. Ray GM, Nawarskas JJ, Anderson JR (2012) Blood pressure monitoring technique impacts hypertension treatment. J Gen Intern Med. 27:623–629

  27. Schroll S, Sériès F, Lewis K, Benjamin A, Escourrou P, Luigart R, Pfeifer M, Arzt M (2014) Acute hemodynamic effects of continuous positive airway pressure in awake patients with heart failure. Respirology 1:47–52

    Article  Google Scholar 

  28. Van Hook CJ, Carilli AD, Haponik EF (1986) Hemodynamic effects of positive end-expiratory pressure historical perspective. Am J Med 81:307–310

    Article  PubMed  Google Scholar 

  29. Fessler HE, Brower RG, Shapiro EP, Permutt S (1993) Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis 148:1657–1664

    Article  CAS  PubMed  Google Scholar 

  30. Joho S, Oda Y, Ushijima R, Hirai T, Inoue H (2012) Effect of adaptive servoventilation on muscle sympathetic nerve activity in patients with chronic heart failure and central sleep. J Card Fail 18:769–775

    Article  PubMed  Google Scholar 

  31. Iwaya S, Yoshihisa A, Nodera M, Owada T, Yamada S, Sato T, Suzuki S, Yamaki T, Sugimoto K, Kunii H,Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2014) Suppressive effects of adaptive servoventilation on ventricular premature complexes with attenuation of sympathetic nervous activity in heart failure patients with sleep-disordered breathing. Heart Vessels 29:470–477

  32. Miyata M, Yoshihisa A, Yamauchi H, Owada T, Sato T, Suzuki S, Sugimoto K, Yamaki T, Kunii H, Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2015) Impact of sleep-disordered breathing on myocardial damage and metabolism in patients with chronic heart failure. Heart Vessels 30:318–324

  33. Koyama T, Watanabe H, Igarashi G, Tamura Y, Ikeda K, Terada S, Ito H (2012) Effect of short-duration adaptive servo-ventilation therapy on cardiac function in patients with heart failure. Circ J 11:2606–2613

  34. Bitter T, Westerheide N, Faber L, Hering D, Prinz C, Langer C, Horstkotte D, Oldenburg O (2010) Adaptive servoventilation in diastolic heart failure and Cheyne–Stokes respiration. Eur Respir J 36:385–392

  35. Berglund, JE, Halden E, Jakobson S, Landelius J (1994) Echocardiographic analysis of cardiac function during high PEEP ventilation. Intensive Care Med 20:174–180

  36. Jardin F, Farcot J, Boisante L, Curien N, Margairaz A, Bourdarias J (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304:387–392

    Article  CAS  PubMed  Google Scholar 

  37. Leithner C, Podolsky A, Globits S, Frank H, Neuhold A, Pidlich J, Schuster E, Staudinger T, Rintelen C, Röggla M (1994) Magnetic resonance imaging of the heart during positive end-expiratory pressure ventilation in normal subjects. Crit Care Med 22:426–432

    Article  CAS  PubMed  Google Scholar 

  38. Rankin JS, Olsen CO, Arentzen CE, Tyson GS, Maier G, Smith PK, Hammon JW Jr, Davis JW, McHale PA, Anderson RW, Sabiston DC Jr (1982) The effects of airway pressure on cardiac function in intact dogs and man. Circulation 108–120

  39. Smeding L, Lust E, Plötz FB, Groeneveld AB (2010) Clinical implications of heart-lung interactions. Neth J Med 68:56–61

  40. Blevins SS, Connolly MJ, Carlson DE (1999) Baroreceptor-mediated compensation for hemodynamic effects of positive end-expiratory pressure. J Appl Physiol 86:285–293

  41. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  42. McMinn TR Jr, Ross J Jr (1995) Hereditary dilated cardiomyopathy. Clin Cardiol 18:7–15

    Article  PubMed  Google Scholar 

  43. Pinsky MR (1994) Cardiovascular effects of ventilatory support and withdrawal. Anesth Analg 79(3):567–576

    Article  CAS  PubMed  Google Scholar 

  44. Javaheri S (2006) CPAP should not be used for central sleep apnea in congestive heart failure patients. J Clin Sleep Med 2:399–402

    PubMed  Google Scholar 

  45. Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, Parker JD, Bradley TD (2009) Relationship between sleep apnoea and mortality in patients with ischaemic heart failure. Heart 10:819–824

    Article  Google Scholar 

  46. Schumann AY, Bartsch RP, Penzel T, Ivanov PCh, Kantelhardt JW (2010) Aging effects on cardiac and respiratory dynamics in healthy subjects across sleep stages. Sleep 33:943–955

    PubMed  PubMed Central  Google Scholar 

  47. Yumino D, Kasai T, Kimmerly D, Amirthalingam V, Floras JS, Bradley TD (2012) Differing effects of obstructive and central sleep apneas on stroke volume in patients with heart failure. Am J Respir Crit Care Med 187:433–438

    Article  PubMed  Google Scholar 

  48. Naughton MT (2012) Cheyne–Stokes respiration: friend or foe? Thorax 67:357–360

    Article  PubMed  Google Scholar 

  49. Oldenburg O, Spießhöfer J, Fox H, Bitter T, Horstkotte D (2015) Cheyne–Stokes respiration in heart failure: friend or foe? Hemodynamic effects of hyperventilation in heart failure patients and healthy volunteers. Clin Res Cardiol 104(4):328–333

    Article  CAS  PubMed  Google Scholar 

  50. Nishihata Y, Takata Y, Usui Y, Kato K, Yamaguchi T, Shiina K, Yamashina A (2015) Continuous positive airway pressure treatment improves cardiovascular outcomes in elderly patients with cardiovascular disease and obstructive sleep apnea. Heart Vessels 30:61–69

  51. ResMed Provides Update on Phase IV SERVE-HF Study of Adaptive Servo-Ventilation Therapy (accessed last on 13/06/2015) http://www.resmed.com/us/en/consumer/newsandinformation/news-releases/2015/resmed-provides-update-on-phase-iv-serve-hf-study-of-adaptive-servo-ventilation-therapy.html

  52. Momomura S, Seino Y, Kihara Y, Adachi H, Yasumura Y, Yokoyama H, Wada H, Ise failure in a confirmatory, multicenter, randomized, controlled study. Circ J 79:981–990

  53. Digby GC, Helen SD, Fitzpatrick M, Ropchan G, Parker C (2011) Use of bioimpedance to assess changes in hemodynamics during acute administration of CPAP. Cardiol Res 2:51–57

    Google Scholar 

  54. Fortin J, Habenbacher W, Gruellenberger R, Wach P, Skrabal F (1998) Real-time monitor for hemodynamic beat-to-beat parameters and power spectra analysis of the biosignals. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Computer Society Press, Piscataway vol. 20, No. 1

  55. Fortin J, Bojic A, Habenbacher W, Heller A, Hacker A, Gruellenberger R, Innerhofer J, Passath H, Wagner Ch, Haitchi G, Flotzinger D, Pacher R, Wach P (2006) Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comput Biol Med 11:1185–1203

  56. Kemps HMC, Thijssen EJM, Schep G, Sleutjes BTHM, De Vries WR, Hoogeveen AR, Wijn PF, Doevendans PA (2008) Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol 105:1822–1829

    Article  PubMed  Google Scholar 

  57. Van de Water JM, Miller TW, Vogel RL, Mount BE, Dalton ML (2003) Impedance cardiography. The next vital sign technology? Chest 123:2028–2033

    Article  PubMed  Google Scholar 

  58. Brown TE, Beightol LA, Koh J, Eckberg DL (1993) Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol 75:2310–2317

    CAS  PubMed  Google Scholar 

  59. Koh J, Brown TE, Beightol LA, Eckberg DL (1998) Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. J Auton Nerv Syst 1–2:89–95

    Article  Google Scholar 

  60. Galderisi M, Henein MY, D’hooge J, Sicari R, Sicari R, Badano LP, Zamorano JL, Roelandt JR (2011) Recommendations of the European Association of Echocardiography: how to use echo-Doppler in clinical trials: different modalities for different purposes; European Association of Echocardiography. Eur J Echocardiogr 5:339–353

    Article  Google Scholar 

Download references

Acknowledgments

English language editing assistance was provided by Nicola Ryan, funded by ResMed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Oldenburg.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spießhöfer, J., Fox, H., Lehmann, R. et al. Heterogenous haemodynamic effects of adaptive servoventilation therapy in sleeping patients with heart failure and Cheyne–Stokes respiration compared to healthy volunteers. Heart Vessels 31, 1117–1130 (2016). https://doi.org/10.1007/s00380-015-0717-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0717-6

Keywords

Navigation