Skip to main content
Log in

Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The response of the right ventricle (RV) to pulmonary arterial hypertension (PAH) involves changes in contractile function, chamber size, hypertrophy, and extracellular matrix (ECM). Galectin-3 (Gal-3) is a mediator of myocardial ECM metabolism and biomarker for left heart remodeling, yet its ability to reflect RV remodeling is unknown. We hypothesized that serum Gal-3 levels correlate with RV morphology and function in PAH, and that Gal-3 is associated with circulating markers of ECM. Fifteen subjects with PAH and 10 age-matched controls underwent same-day echocardiography, cardiac magnetic resonance (CMR) imaging, and phlebotomy for Gal-3 and ECM biomarkers including N-terminal propeptide of type III collagen type (PIIINP), tissue inhibitor of metalloproteinase-1 (TIMP-1), and hyaluronic acid (HA). RV ejection fraction, end diastolic volume index, end systolic volume index, and mass index were calculated using CMR. Echocardiography was used to estimate RV systolic pressure and measure RV strain. Serum Gal-3, TIMP-1, and HA levels were all significantly increased in PAH subjects when compared to controls. Gal-3 correlated with RV ejection fraction (ρ −0.44, p 0.03), end diastolic volume index (ρ 0.42, p 0.03), end systolic volume index (ρ 0.44, p 0.027), mass index (ρ 0.47, p 0.016), systolic pressure (ρ 0.55, p < 0.001), and strain (ρ 0.43, p 0.03). Gal-3 levels positively correlated with the ECM markers TIMP-1 and HA but not with PIIINP. In conclusion, Gal-3 levels are associated with multiple indices of RV function and morphology. Gal-3 may represent a novel biomarker for RV remodeling and associated ECM turnover in PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Not all product offerings are available in all countries. Product availability may vary from country to country and is subject to varying regulatory requirements.

References

  1. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Badesch DB, McGoon MD (2010) Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL). Circulation 122:164–172

    Article  PubMed  Google Scholar 

  2. Chin KM, Kim NH, Rubin LJ (2005) The right ventricle in pulmonary hypertension. Coron Artery Dis 16:13–18

    Article  PubMed  Google Scholar 

  3. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, Levy PS, Pietra GG, Reid LM, Reeves JT, Rich S, Vreim CE, Williams GW, Wu M (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349

    Article  PubMed  Google Scholar 

  4. McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, Ahearn G (2004) Prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126:78S–92S

    Article  PubMed  Google Scholar 

  5. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  6. Leuchte HH, Holzapfel M, Baumgartner RA, Ding I, Neurohr C, Vogeser M, Kolbe T, Schwaiblmair M, Behr J (2004) Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 43:764–770

    Article  CAS  PubMed  Google Scholar 

  7. Batal O, Faulx M, Krasuski RA, Khatib OF, Hammel JP, Hussein AA, Minai OA, Dweik RA (2012) Effect of obesity on B-type natriuretic peptide levels in patients with pulmonary arterial hypertension. Am J Cardiol 110:909–914

    Article  CAS  PubMed  Google Scholar 

  8. Rivera M, Cortes R, Salvador A, Bertomeu V, de Burgos FG, Roselló-Lletí E, Portolés M, Payá R, Martínez-Dolz L, Climent V (2005) Obese subjects with heart failure have lower N-terminal pro-brain natriuretic peptide plasma levels irrespective of aetiology. Eur J Heart Fail 7:1168–1170

    Article  CAS  PubMed  Google Scholar 

  9. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, Frohlich ED (2004) Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol 43:1590–1595

    Article  CAS  PubMed  Google Scholar 

  10. Raymond I, Groenning BA, Hildebrandt PR, Nilsson JC, Baumann M, Trawinski J, Pedersen F (2003) The influence of age, sex and other variables on the plasma level of N-terminal pro brain natriuretic peptide in a large sample of the general population. Heart 89:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC Jr (2002) Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 40:976–982

    Article  CAS  PubMed  Google Scholar 

  12. Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, Sutherland P, Omland T, Vasan RS (2002) Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol 90:254–258

    Article  CAS  PubMed  Google Scholar 

  13. Karayannis G, Triposkiadis F, Skoularigis J, Georgoulias P, Butler J, Giamouzis G (2013) The emerging role of Galectin-3 and ST2 in heart failure: practical considerations and pitfalls using novel biomarkers. Curr Heart Fail Rep 10:441–449

    Article  CAS  PubMed  Google Scholar 

  14. Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, André S, Crijns HJ, Gabius HJ, Maessen J, Pinto YM (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128

    Article  CAS  PubMed  Google Scholar 

  15. Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H, Sanjabi B, van der Harst P, Pitt B, Goldstein IJ, Koerts JA, van Veldhuisen DJ, Bank RA, van Gilst WH, Silljé HH, de Boer RA (2013) Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ Heart Fail 6:107–117

    Article  CAS  PubMed  Google Scholar 

  16. Waldenstrom A, Martinussen HJ, Gerdin B, Hallgren R (1991) Accumulation of hyaluronan and tissue edema in experimental myocardial infarction. J Clin Invest 88:1622–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C, Arumugam S, Sales S, Ariotti N, Chambon V, Lamaze C, Loew D, Shevchenko A, Gaus K, Parton RG, Johannes L (2014) Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16:595–606

    Article  CAS  PubMed  Google Scholar 

  18. Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633

    Article  CAS  PubMed  Google Scholar 

  19. Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, Larson MG, Levy D (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL (2010) Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail 12:826–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Safdar Z, Tamez E, Chan W, Arya B, Ge Y, Deswal A, Bozkurt B, Frost A, Entman M (2014) Circulating collagen biomarkers as indicators of disease severity in pulmonary arterial hypertension. JACC Heart Fail 2:412–421

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aytekin M, Comhair SA, de la Motte C, Bandyopadhyay SK, Farver CF, Hascall VC, Erzurum SC, Dweik RA (2008) High levels of hyaluronan in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 295:L789–L799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen CA, Tseng WY, Wang JK, Chen SY, Ni YH, Huang KC, Ho YL, Chang CI, Chiu IS, Su MY, Yu HY, Lin MT, Lu CW, Wu MH (2013) Circulating biomarkers of collagen type I metabolism mark the right ventricular fibrosis and adverse markers of clinical outcome in adults with repaired tetralogy of Fallot. Int J Cardiol 167:2963–2968

    Article  PubMed  Google Scholar 

  24. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53:1573–1619

    Article  PubMed  Google Scholar 

  25. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  26. Yock PG, Popp RL (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    Article  CAS  PubMed  Google Scholar 

  27. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107:526–531

    Article  CAS  PubMed  Google Scholar 

  28. Rojo EC, Rodrigo JL, Perez de Isla L, Almeria C, Gonzalo N, Aubele A, Cinza R, Zamorano J, Macaya C (2006) Disagreement between tissue Doppler imaging and conventional pulsed wave Doppler in the measurement of myocardial performance index. Eur J Echocardiogr 7:356–364

    Article  PubMed  Google Scholar 

  29. Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98:699–704

    Article  PubMed  Google Scholar 

  30. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  CAS  PubMed  Google Scholar 

  31. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F, Chronic Kidney Disease Epidemiology Collaboration (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  32. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, Shirolkar SC, Donahue M, Kitzman DW, Zannad F, Piña IL, O’Connor CM (2012) Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail 5:72–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu FT, Hughes J, Sethi T (2008) Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol 172:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Seaghdha CM, Hwang SJ, Ho JE, Vasan RS, Levy D, Fox CS (2013) Elevated galectin-3 precedes the development of CKD. J Am Soc Nephrol 24:1470–1477

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin YH, Lin LY, Wu YW, Chien KL, Lee CM, Hsu RB, Chao CL, Wang SS, Hsein YC, Liao LC, Ho YL, Chen MF (2009) The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta 409:96–99

    Article  CAS  PubMed  Google Scholar 

  36. Stefanon I, Valero-Munoz M, Fernandes AA, Ribeiro RF Jr, Rodriguez C, Miana M, Martínez-González J, Spalenza JS, Lahera V, Vassallo PF, Cachofeiro V (2013) Left and right ventricle late remodeling following myocardial infarction in rats. PLoS One 8:e64986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giannelli G, Iannone F, Marinosci F, Lapadula G, Antonaci S (2006) Clinical outcomes of bosentan in pulmonary arterial hypertension do not correlate with levels of TIMPs. Eur J Clin Invest 36(Suppl 3):73–77

    Article  CAS  PubMed  Google Scholar 

  38. Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, Simpson AJ, Forbes SJ, Hirani N, Gauldie J, Sethi T (2012) Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3. Am J Respir Crit Care Med 185:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma C, Chegini N (1999) Regulation of matrix metalloproteinases (MMPs) and their tissue inhibitors in human myometrial smooth muscle cells by TGF-beta1. Mol Hum Reprod 5:950–954

    Article  CAS  PubMed  Google Scholar 

  40. Papakonstantinou E, Kouri FM, Karakiulakis G, Klagas I, Eickelberg O (2008) Increased hyaluronic acid content in idiopathic pulmonary arterial hypertension. Eur Respir J 32:1504–1512

    Article  CAS  PubMed  Google Scholar 

  41. Botney MD, Bahadori L, Gold LI (1994) Vascular remodeling in primary pulmonary hypertension. Potential role for transforming growth factor-beta. Am J Pathol 144:286–295

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mielniczuk LM, Chandy G, Stewart D, Contreras-Dominguez V, Haddad H, Pugliese C, Davies RA (2012) Worsening renal function and prognosis in pulmonary hypertension patients hospitalized for right heart failure. Congest Heart Fail 18:151–157

    Article  CAS  PubMed  Google Scholar 

  44. Nishi Y, Sano H, Kawashima T, Okada T, Kuroda T, Kikkawa K, Kawashima S, Tanabe M, Goto T, Matsuzawa Y, Matsumura R, Tomioka H, Liu FT, Shirai K (2007) Role of galectin-3 in human pulmonary fibrosis. Allergol Int 56:57–65

    Article  CAS  PubMed  Google Scholar 

  45. Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, Haslett C, Simpson KJ, Sethi T (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci USA 103:5060–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo Y, Su L, Li Y, Guo N, Xie L, Zhang D, Zhang X, Li H, Zhang G, Wang Y, Liu C (2014) The synergistic therapeutic effect of hepatocyte growth factor and granulocyte colony-stimulating factor on pulmonary hypertension in rats. Heart Vessel 29:520–531

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Siemens Healthcare Diagnostics for their support of this project.

Conflict of interest

The authors have no relevant financial relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett E. Fenster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenster, B.E., Lasalvia, L., Schroeder, J.D. et al. Galectin-3 levels are associated with right ventricular functional and morphologic changes in pulmonary arterial hypertension. Heart Vessels 31, 939–946 (2016). https://doi.org/10.1007/s00380-015-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0691-z

Keywords

Navigation