Skip to main content

Advertisement

Log in

Association between circulating FGF23, α-Klotho, and left ventricular diastolic dysfunction among patients with preserved ejection fraction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Besides regulating calcium-phosphate metabolism, fibroblast growth factor-23 (FGF23) and Klotho have been proposed to have other roles in heart and vasculature. For example, FGF23 has been associated with cardiac hypertrophy and reduced left ventricular ejection fraction among patients with chronic kidney disease and cardiovascular disorders. The purpose of the study was to investigate whether serum FGF23 and α-Klotho concentrations are associated with cardiac diastolic dysfunction and related parameters among cardiac patients with preserved left ventricular ejection fraction. The current study enrolled 269 patients (69 women, 200 men) who were admitted to our cardiology department between October 2012 and January 2014 and had a left ventricular ejection fraction of >50 %. Cardiac diastolic function was assessed by blood flow and tissue Doppler velocities, plasma B-type natriuretic peptide (BNP) concentration, and cardiac hypertrophy. After adjusting for sex, and age, logistic regression analysis showed that log(α-Klotho), but not log(FGF23), was significantly associated with diastolic dysfunction. After further adjustment for renal function, blood hemoglobin, and serum albumin levels, the negative association between log(α-Klotho) and diastolic dysfunction retained statistical significance with an odds ratio of 0.50 (95 % confidence interval 0.31–0.81, P = 0.005, per 1 standard deviation). Among patients with preserved LVEF, serum α-Klotho concentrations were negatively associated with diastolic dysfunction. Whether modulation of serum levels α-Klotho will ameliorate cardiac diastolic function among patients with this disorder awaits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  PubMed  CAS  Google Scholar 

  2. Fukumoto S (2014) Phosphate metabolism and vitamin D. Bonekey Rep 3:497

    PubMed  PubMed Central  Google Scholar 

  3. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  4. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  PubMed  CAS  Google Scholar 

  6. Hu MC, Kuro-o M, Moe OW (2013) Renal and extrarenal actions of Klotho. Semin Nephrol 33:118–129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ky B, Shults J, Keane MG, Sutton MS, Wolf M, Feldman HI, Reese PP, Anderson CA, Townsend RR, Deo R, Lo J, Gadegbeku C, Carlow D, Sulik MJ, Leonard MB (2013) FGF23 modifies the relationship between vitamin D and cardiac remodeling. Circ Heart Fail 6:817–824

    Article  PubMed  CAS  Google Scholar 

  8. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro OM, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Seiler S, Rogacev KS, Roth HJ, Shafein P, Emrich I, Neuhaus S, Floege J, Fliser D, Heine GH (2014) Associations of FGF-23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2-4. Clin J Am Soc Nephrol 9:1049–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Xie J, Cha SK, An SW, Kuro OM, Birnbaumer L, Huang CL (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1238

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shibata K, Fujita S, Morita H, Okamoto Y, Sohmiya K, Hoshiga M, Ishizaka N (2013) Association between circulating fibroblast growth factor 23, alpha-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One 8:e73184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fujita S, Okamoto Y, Shibata K, Morita H, Ito T, Sohmiya K, Hoshiga M, Ishizaka N (2013) Serum uric acid is associated with left ventricular hypertrophy independent of serum parathyroid hormone in male cardiac patients. PLoS One 8:e82735

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matsubara T, Miyaki A, Akazawa N, Choi Y, Ra SG, Tanahashi K, Kumagai H, Oikawa S, Maeda S (2014) Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. Am J Physiol Heart Circ Physiol 306:H348–H355

    Article  PubMed  CAS  Google Scholar 

  14. Kitzman DW, Daniel KR (2007) Diastolic heart failure in the elderly. Heart Fail Clin 3:437–453

    Article  PubMed  Google Scholar 

  15. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  PubMed  CAS  Google Scholar 

  16. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618

    Article  PubMed  CAS  Google Scholar 

  17. Wachtell K, Bella JN, Liebson PR, Gerdts E, Dahlof B, Aalto T, Roman MJ, Papademetriou V, Ibsen H, Rokkedal J, Devereux RB (2000) Impact of different partition values on prevalences of left ventricular hypertrophy and concentric geometry in a large hypertensive population : the LIFE study. Hypertension 35:6–12

    Article  PubMed  CAS  Google Scholar 

  18. Roman MJ, Pickering TG, Schwartz JE, Pini R, Devereux RB (1996) Relation of arterial structure and function to left ventricular geometric patterns in hypertensive adults. J Am Coll Cardiol 28:751–756

    Article  PubMed  CAS  Google Scholar 

  19. Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, Kalman J, Phillips RA, Steingart R, Brown EJ Jr, Berkowitz R, Moskowitz R, Soni A, Mancini D, Bijou R, Sehhat K, Varshneya N, Kukin M, Katz SD, Sleeper LA, Le Jemtel TH (2004) Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol 43:1432–1438

    Article  PubMed  Google Scholar 

  20. Volpe M, McKelvie R, Drexler H (2010) Hypertension as an underlying factor in heart failure with preserved ejection fraction. J Clin Hypertens (Greenwich) 12:277–283

    Article  Google Scholar 

  21. Negishi K, Kobayashi M, Ochiai I, Yamazaki Y, Hasegawa H, Yamashita T, Shimizu T, Kasama S, Kurabayashi M (2010) Association between fibroblast growth factor 23 and left ventricular hypertrophy in maintenance hemodialysis patients. Comparison with B-type natriuretic peptide and cardiac troponin T. Circ J 74:2734–2740

    Article  PubMed  CAS  Google Scholar 

  22. di Giuseppe R, Buijsse B, Hirche F, Wirth J, Arregui M, Westphal S, Isermann B, Hense HW, Dierkes J, Boeing H, Stangl GI, Weikert C (2013) Plasma fibroblast growth factor 23, parathyroid hormone, 25-hydroxyvitaminD3 and risk of heart failure: a prospective, case-cohort study. J Clin Endocrinol Metab jc20132963

  23. Semba RD, Cappola AR, Sun K, Bandinelli S, Dalal M, Crasto C, Guralnik JM, Ferrucci L (2011) Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 59:1596–1601

    Article  PubMed  PubMed Central  Google Scholar 

  24. Song S, Gao P, Xiao H, Xu Y, Si LY (2013) Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS ONE 8:e82968

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, Yamanari T, Kikumoto Y, Uchida HA, Kitamura S, Maeshima Y, Nakamura K, Ito H, Makino H (2013) A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One 8:e56695

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Fernandes VR, Polak JF, Cheng S, Rosen BD, Carvalho B, Nasir K, McClelland R, Hundley G, Pearson G, O’Leary DH, Bluemke DA, Lima JA (2008) Arterial stiffness is associated with regional ventricular systolic and diastolic dysfunction: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol 28:194–201

    Article  PubMed  CAS  Google Scholar 

  27. Nair D, Shlipak MG, Angeja B, Liu HH, Schiller NB, Whooley MA (2005) Association of anemia with diastolic dysfunction among patients with coronary artery disease in the Heart and Soul Study. Am J Cardiol 95:332–336

    Article  PubMed  PubMed Central  Google Scholar 

  28. Srivastava PM, Thomas MC, Calafiore P, MacIsaac RJ, Jerums G, Burrell LM (2006) Diastolic dysfunction is associated with anaemia in patients with Type II diabetes. Clin Sci (Lond) 110:109–116

    Article  Google Scholar 

  29. Marechaux S, Six-Carpentier MM, Bouabdallaoui N, Montaigne D, Bauchart JJ, Mouquet F, Auffray JL, Le Tourneau T, Asseman P, LeJemtel TH, Ennezat PV (2011) Prognostic importance of comorbidities in heart failure with preserved left ventricular ejection fraction. Heart Vessels 26:313–320

    Article  PubMed  Google Scholar 

  30. Zhang Y, Safar ME, Iaria P, Agnoletti D, Protogerou AD, Blacher J (2010) Prevalence and prognosis of left ventricular diastolic dysfunction in the elderly: the PROTEGER study. Am Heart J 160:471–478

    Article  PubMed  Google Scholar 

  31. Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  32. Jorge AJ, Ribeiro ML, Rosa ML, Licio FV, Fernandes LC, Lanzieri PG, Jorge BA, Brito FO, Mesquita ET (2012) Left atrium measurement in patients suspected of having heart failure with preserved ejection fraction. Arq Bras Cardiol 98:175–181

    Article  PubMed  Google Scholar 

  33. Masugata H, Senda S, Inukai M, Murao K, Tada S, Hosomi N, Iwado Y, Noma T, Kohno M, Himoto T, Goda F (2011) Association between high-sensitivity C-reactive protein and left ventricular diastolic function assessed by echocardiography in patients with cardiovascular risk factors. Tohoku J Exp Med 223:263–268

    Article  PubMed  CAS  Google Scholar 

  34. Perry GJ, Ahmed MI, Desai RV, Mujib M, Zile M, Sui X, Aban IB, Zhang Y, Tallaj J, Allman RM, Aronow WS, Fleg JL, Ahmed A (2011) Left ventricular diastolic function and exercise capacity in community-dwelling adults ≥65 years of age without heart failure. Am J Cardiol 108:735–740

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harada M, Hara F, Yamazaki J (2010) Correlation between plasma B-type natriuretic peptide levels and left ventricular diastolic function using color kinetic imaging. J Cardiol 56:91–96

    Article  PubMed  Google Scholar 

  36. Wan SH, Vogel MW, Chen HH (2014) Pre-clinical diastolic dysfunction. J Am Coll Cardiol 63:407–416

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, Jacobsen SJ, Rodeheffer RJ (2011) Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 306:856–863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobukazu Ishizaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, Y., Fujita, Si., Morita, H. et al. Association between circulating FGF23, α-Klotho, and left ventricular diastolic dysfunction among patients with preserved ejection fraction. Heart Vessels 31, 66–73 (2016). https://doi.org/10.1007/s00380-014-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0581-9

Keywords

Navigation