Heart and Vessels

, Volume 29, Issue 4, pp 532–541 | Cite as

Fluvastatin-induced reduction of oxidative stress ameliorates diabetic cardiomyopathy in association with improving coronary microvasculature

  • Takuya Shida
  • Takashi Nozawa
  • Mitsuo Sobajima
  • Hiroyuki Ihori
  • Akira Matsuki
  • Hiroshi Inoue
Original Article

Abstract

Diabetic cardiomyopathy is associated with increased oxidative stress and vascular endothelial dysfunction, which lead to coronary microangiopathy. We tested whether statin-induced redox imbalance improvements could ameliorate diabetic cardiomyopathy and improve coronary microvasculature in streptozotocin-induced diabetes mellitus (DM). Fluvastatin (10 mg/kg/day) or vehicle was orally administered for 12 weeks to rats with or without DM. Myocardial oxidative stress was assessed by NADPH (nicotinamide adenine dinucleotide phosphate) oxidase subunit p22phox and gp91phox mRNA expression, and myocardial 8-iso-prostaglandin F (PGF) levels. Myocardial vascular densities were assessed using anti-CD31 and anti-α-smooth muscle actin (SMA) antibodies. Fluvastatin did not affect blood pressure or plasma cholesterol, but attenuated increased left ventricular (LV) minimum pressure and ameliorated LV systolic dysfunction in DM rats in comparison with vehicle (LV dP/dt, 8.9 ± 1.8 vs 5.4 ± 1.0 × 103 mmHg/s, P < 0.05). Myocardial oxidative stress increased in DM, but fluvastatin significantly reduced p22phox and gp91phox mRNA expression and myocardial PGF levels. Fluvastatin enhanced myocardial endothelial nitric oxide synthase (eNOS) protein levels and increased eNOS, vascular endothelial growth factor, and hypoxia-inducible factor-1α mRNA expression. CD31-positive cell densities were lower in DM rats than in non-DM rats (28.4 ± 13.2 vs 48.6 ± 4.3/field, P < 0.05) and fluvastatin restored the number (57.8 ± 18.3/field), although there were no significant differences in SMA-positive cell densities between groups. Fluvastatin did not affect cardiac function, oxidative stress, or vessel densities in non-DM rats. These results suggest that beneficial effects of fluvastatin on diabetic cardiomyopathy might result, at least in part, from improving coronary microvasculature through reduction in myocardial oxidative stress and upregulation of angiogenic factor.

Keywords

Streptozotocin Statin Oxidative stress Coronary microvessels 

References

  1. 1.
    Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni OT, Boccuzzi G (2006) Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 147:5967–5974PubMedCrossRefGoogle Scholar
  2. 2.
    Ye G, Metreveli NS, Ren J, Epstein PN (2003) Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species protection. Diabetes 52:777–783PubMedCrossRefGoogle Scholar
  3. 3.
    Brownlee M, Cerami A, Viassara H (1988) Advanced products of nonenzymatic glycosylation and the pathogenesis of diabetic vascular disease. Diabetes Metab Rev 4:437–451PubMedCrossRefGoogle Scholar
  4. 4.
    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939–1945PubMedCrossRefGoogle Scholar
  5. 5.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMedCrossRefGoogle Scholar
  6. 6.
    Yagihashi S, Yamagishi S, Wada R, Baba M, Hohman TC, Yabe-Nishimura C, Kokai Y (2001) Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain 124:2448–2458PubMedCrossRefGoogle Scholar
  7. 7.
    Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens MJ (2004) Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 44:2368–2374PubMedCrossRefGoogle Scholar
  8. 8.
    Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, Omata M (1997) Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 15:1472–1477CrossRefGoogle Scholar
  9. 9.
    Yokoyama I, Yonekura K, Ohtake T, Yang W, Shin WS, Yamada N, Ohtomo K, Nagai R (2000) Coronary microangiopathy in type 2 diabetic patients: relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J Nucl Med 41:978–985PubMedGoogle Scholar
  10. 10.
    Han B, Baliga R, Huang H, Giannone PJ, Bauer JA (2009) Decreased cardiac expression of vascular endothelial growth factor and redox imbalance in murine diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 297:H829–H835PubMedCrossRefGoogle Scholar
  11. 11.
    Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111:2073–2085PubMedCrossRefGoogle Scholar
  12. 12.
    Heart Protection Study Collaborative Group (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016CrossRefGoogle Scholar
  13. 13.
    Sowers JR (2003) Effects of statins on the vasculature: implications for aggressive lipid management in the cardiovascular metabolic syndrome. Am J Cardiol 91:14B–22BPubMedCrossRefGoogle Scholar
  14. 14.
    Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271PubMedCrossRefGoogle Scholar
  16. 16.
    Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaza M, Liao JK (2001) Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108:1429–1437PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Suzumura K, Tanaka K, Yasuhara M, Narita H (2000) Inhibitory effects of fluvastatin and its metabolites on hydrogen peroxide-induced oxidative destruction of hemin and low-density lipoprotein. Biol Pharm Bull 23:873–878PubMedCrossRefGoogle Scholar
  19. 19.
    Sobajima M, Nozawa T, Shida T, Ohori T, Suzuki T, Matsuki A, Inoue H (2011) Repeated sauna therapy attenuates ventricular remodeling after myocardial infarction in rats by increasing coronary vascularity of noninfarcted myocardium. Am J Physiol Heart Circ Physiol 301:H548–H554PubMedCrossRefGoogle Scholar
  20. 20.
    Matsuki A, Nozawa T, Igarashi N, Sobajima M, Ohori T, Suzuki T, Fujii N, Igawa A, Inoue H (2010) Fluvastatin attenuates diabetes-induced cardiac sympathetic neuropathy in association with a decrease in oxidative stress. Circ J 74:468–475PubMedCrossRefGoogle Scholar
  21. 21.
    Ohashi N, Yoshikawa M (2000) Rapid and sensitive quantification of 8-isoprostaglandin F2α in human plasma and urine by lipid chromatography-electrospray ionization mass spectrometry. J Chromatogr B 746:17–24CrossRefGoogle Scholar
  22. 22.
    Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadán-Diehl C, Goldberg IJ (2007) Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 100:1415–1427PubMedCrossRefGoogle Scholar
  23. 23.
    Asghar O, Al-Sunni A, Khavandi K, Khavandi A, Withers S, Greenstein A (2009) Diabetic cardiomyopathy. Clin Sci 116:741–760PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223PubMedCrossRefGoogle Scholar
  25. 25.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 17:596–605CrossRefGoogle Scholar
  26. 26.
    Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948PubMedCrossRefGoogle Scholar
  27. 27.
    Korte FS, Mokelke EA, Sturek M, McDonald KS (2005) Exercise improves impaired ventricular function and alterations of cardiac myofibrillar proteins in diabetic dyslipidemic pigs. J Appl Physiol 98:461–467PubMedCrossRefGoogle Scholar
  28. 28.
    Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bücker-Gärtner C, Spillmann F, Noutsias M, Riad A, Schultheiss HP, Tschöpe C (2007) Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56:1834–1841PubMedCrossRefGoogle Scholar
  29. 29.
    Fein FS, Sonnenblick EH (1985) Diabetic cardiomyopathy. Prog Cardiovasc Dis 27:255–270PubMedCrossRefGoogle Scholar
  30. 30.
    Crespo MJ, Zalacain J, Dunbar DC, Arocho L (2008) Cardiac oxidative stress is elevated at the onset of dilated cardiomyopathy in streptozotocin-diabetic rats. J Cardiovasc Pharmacol Ther 13:64–71PubMedCrossRefGoogle Scholar
  31. 31.
    Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C (1999) In vivo formation of 8-iso-prostaglandin F and platelet activation in diabetes mellitus. Effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229PubMedCrossRefGoogle Scholar
  32. 32.
    Bayraktutan U, Blayney L, Shah AM (2000) Molecular characterization and localization of the NAD(P)H oxidase components gp91phox and p22phox in endothelial cells. Arterioscler Thromb Vasc Biol 20:1903–1911PubMedCrossRefGoogle Scholar
  33. 33.
    Van Heerebeek L, Meischl C, Stooker W, Meijer CJ, Niessen HW, Roos D (2002) NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol 55:561–568PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Mallat Z, Nakamura T, Ohan J, Leseche G, Tedgui A, Maclouf J, Murphy RC (1999) The relationship of hydroxyeicosatetraenoic acids and F2-isoprostanes to plaque instability in human carotid atherosclerosis. J Clin Invest 103:421–427PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Pratico D, Lee VM, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12:1777–1783PubMedGoogle Scholar
  36. 36.
    Beckman JA, Goldfine AB, Gordon MB, Creager M (2001) Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 103:1618–1623PubMedCrossRefGoogle Scholar
  37. 37.
    El-Azab MF, Hazem RM, Moustafa YM (2012) Role of simvastatin and/or antioxidant vitamins in the therapeutic angiogenesis in experimental diabetic hindlimb ischemia: effects on capillary density, angiogenesis markers, and oxidative stress. Eur J Pharmacol 690:31–41PubMedCrossRefGoogle Scholar
  38. 38.
    Erös B, Snipes JA, Tulbert CD, Katakam P, Miller AW, Busija DW (2006) Rosuvastatin improves cerebrovascular function in Zuker obese rats by inhibiting NAD(P)H oxidase-dependent superoxide production. Am J Physiol Heart Circ Physiol 290:H1264–H1270CrossRefGoogle Scholar
  39. 39.
    Katoh M, Kurosawa Y, Tanaka K, Watanabe A, Doi H, Narita H (2001) Fluvastatin inhibits O2 and ICAM-1 levels in a rat model with aortic remodeling induced by pressure overload. Am J Physiol Heart Circ Physiol 281:H655–H660PubMedGoogle Scholar
  40. 40.
    Cai S, Khoo J, Mussa S, Alp NJ, Channon KM (2005) Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia 48:1933–1940PubMedCrossRefGoogle Scholar
  41. 41.
    Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL (2002) Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105:373–379PubMedCrossRefGoogle Scholar
  42. 42.
    Loomans CJ, de Koning EJ, Staal FJ, Rookmaaaker MB, Verseyden C, de Boer HC (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199PubMedCrossRefGoogle Scholar
  43. 43.
    Emanueli C, Monopoli A, Kraenkel N, Meloni M, Gadau S, Campesi I, Ongini E, Madeddu P (2007) Nitropravastatin stimulates reparative neovascularisation and improves recovery from limb ischemia in type-1 diabetic mice. Br J Pharmacol 150:873–882PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Kimura H, Esumi H (2003) Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol 50:49–59PubMedGoogle Scholar
  45. 45.
    Thirunavukkarasu M, Selvaraju V, Dunna NR, Foye JLC, Joshi M, Otani H, Maulik N (2013) Simvastatin treatment inhibits hypoxia inducible factor 1-alpha (HIF-1 alpha)-prolyl-4-hydroxylase 3 (PHD-3) and increases angiogenesis after myocardial infarction in streptozotocin-induced diabetic rat. Int J Cardiol (Epub ahead of print)Google Scholar
  46. 46.
    Roy H, Bhardwaj S, Ylä-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580:2879–2887PubMedCrossRefGoogle Scholar
  47. 47.
    McDonagh PF, Hokama JY (2000) Microvascular perfusion and transport in the diabetic heart. Microcirculation 7:163–181PubMedCrossRefGoogle Scholar
  48. 48.
    Van Linthout S, Riad A, Dhayat N, Spillmann F, Du J, Dhayat S, Westermann D, Hilfiker-Kleiner D, Noutsias M, Laufs U, Schulthesis HP, Tschöpe C (2007) Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 50:1977–1986PubMedCrossRefGoogle Scholar
  49. 49.
    Bambace C, Sepe A, Zoico E, Telesca M, Oliso D, Venturi S, Rossi A, Corzato F, Faccioli S, Cominacini L, Santini F, Zamboni M (2013) Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. doi:10.1007/s00380-012-0315-9 PubMedGoogle Scholar
  50. 50.
    Matsuki A, Igawa A, Nozawa T, Nakadate T, Igarashi N, Nonomura M, Inoue H (2006) Early administration of fluvastatin, but not at the onset of ischemia or reperfusion, attenuates myocardial ischemia–reperfusion injury through the nitric oxide pathway rather than its antioxidant property. Circ J 70:1643–1649PubMedCrossRefGoogle Scholar
  51. 51.
    Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T, Wen J, Takeshita A (2002) Fluvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873PubMedCrossRefGoogle Scholar
  52. 52.
    Suzumura K, Yasuhara M, Tanaka K, Odawara A, Narita H, Suzuki T (1999) An in vivo study of the hydroxyl radical scavenging property of fluvastatin, and HMG-CoA reductase inhibitor. Chem Pharm Bull 47:1010–1012PubMedCrossRefGoogle Scholar
  53. 53.
    Sata M, Nishimatsu H, Osuga J, Tanaka K, Ishizaka N, Ishibashi S, Hirata Y, Nagai R (2004) Statins augment collateral growth in response to ischemia but they do not promote cancer and atherosclerosis. Hypertension 43:1214–1220PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Takuya Shida
    • 1
  • Takashi Nozawa
    • 1
  • Mitsuo Sobajima
    • 1
  • Hiroyuki Ihori
    • 1
  • Akira Matsuki
    • 1
  • Hiroshi Inoue
    • 1
  1. 1.Second Department of Internal Medicine, Graduate School of MedicineUniversity of ToyamaToyamaJapan

Personalised recommendations