Skip to main content
Log in

Intra-aortic balloon pumping reduces the increased arterial load caused by acute cardiac depression, modifying central and peripheral load determinants in a time- and flow-related way

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The mechanisms that explain intra-aortic balloon pumping (IABP) effects are not completely understood, and attributing them only to pressure-associated changes in cardiac function would be an oversimplification. Since IABP modifies the aortic and systemic blood-flow pattern, flow-related effects could be expected. To characterize effects of acute heart failure (AHF) on the arterial biomechanics; IABP effects on the arterial biomechanics during AHF, and their potential time-dependence; the association between hemodynamics and biomechanical changes during AHF and IABP. Sheep (n = 6) aortic pressure, flow, and diameter were measured: (1) before (Basal) and (2) 1–3 (HF1–3) and 28–30 (HF28–30) min after starting halothane to induce AHF; and (3) at specific times (1–3, 14–15 and 28–30 min) during IABP assistance. Calculus: aortic characteristic impedance (Z c), beta stiffness (β), incremental (E INC) and pressure–strain elastic modulus (E P); total arterial compliance (C G), total systemic vascular resistance and wave propagation parameters. (1) AHF resulted in an acute increase in aortic and systemic stiffness (HF28–30 % changes with respect to Basal conditions: β +217%, E P +143%, E INC +101%, Z c +52%, C G −13%), associated with the reduction in the aortic blood flow; (2) during AHF IABP resulted in acute beneficial changes aortic and systemic biomechanics (% changes in IABP1–3 with respect HF28–30: β −62%, E P −68%, E INC −66%, Z c −38%, C G 66%), and in wave propagation parameters, (3) IABP-related changes were time-dependent and associated with changes in aortic blood flow. Aortic and systemic biomechanical and impedance properties are detrimentally modified during AHF, being the changes rapidly reverted during IABP. IABP-related beneficial changes in arterial biomechanics were time-dependent and associated with IABP capability to increase blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kawaguchi O, Pae WE, Daily BB, Pierce WS (1999) Ventriculoarterial coupling with intra-aortic balloon pump in acute ischemic heart failure. J Thorac Cardiovasc Surg 117:164–171

    Article  PubMed  CAS  Google Scholar 

  2. Cotter G, Felker GM, Adams KF, Milo-Cotter O, O’Connor CM (2008) The pathophysiology of acute heart failure—is it all about fluid accumulation? Am Heart J 155:9–18

    Article  PubMed  Google Scholar 

  3. Giannattasio C, Achilli F, Failla M, Capra A, Vincenzi A, Gentile G, Corsi D, Zazzeron C, Turolo L, Morganti A, Mancia G (2004) Arterial stiffness in heart failure patients: dependence on diastolic dysfunction and plasma aldosterone levels. Eur Heart J Suppl 6(Suppl F):F30–F34

    Article  Google Scholar 

  4. Meguro T, Nagatomo Y, Nagae A, Seki C, Kondou N, Shibata M, Oda Y (2009) Elevated arterial stiffness evaluated by brachial-ankle pulse wave velocity is deleterious for the prognosis of patients with heart failure. Circ J 73:673–680

    Article  PubMed  Google Scholar 

  5. Nichols WW, O’Rourke M. Chapter 3: properties of the arterial wall: theory. Chapter 4: properties of the arterial wall: practice. In: Nichols WW, O’Rourke M (eds) Mc Donald’s blood flow in arteries: theoretical, experimental and clinical principles, 4th edn. Edward Arnold Publishers, London, 2005, pp 49–65, 67–93

  6. Fukuta H, Ohte N, Wakami K, Asada K, Goto T, Mukai S, Kimura G (2011) Reduced renal function is associated with combined increases in ventricular-systolic stiffness and arterial load in patients undergoing cardiac catheterization for coronary artery disease. Heart Vessels 26:10–16

    Article  PubMed  Google Scholar 

  7. Trost JC, Hillis LD (2006) Intra-aortic balloon counterpulsation. Am J Cardiol 97:1391–1398

    Article  PubMed  Google Scholar 

  8. Aoyagi S, Fukunaga S, Arinaga K, Tomoeda H, Akasu K, Ueda T (2010) Heart valve surgery in octogenarians: operative and long-term results. Heart Vessels 25:522–528

    Article  PubMed  Google Scholar 

  9. Bia D, Zócalo Y, Armentano R, Camus J, Forteza E, Cabrera-Fischer E (2008) Increased reversal and oscillatory shear stress cause smooth muscle contraction-dependent changes in sheep aortic dynamics: role in aortic balloon pump circulatory support. Acta Physiol (Oxf) 192:487–503

    Article  CAS  Google Scholar 

  10. Bia D, Cabrera-Fischer E, Zócalo Y, Armentano R (2011) The endothelium modulates the arterial wall mechanical response to intra-aortic balloon counterpulsation: in vivo studies. Artif Organs 35:883–892

    Article  PubMed  Google Scholar 

  11. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  PubMed  CAS  Google Scholar 

  12. Papaioannou TG, Mathioulakis DS, Stamatelopoulos KS, Gialafos EJ, Lekakis JP, Nanas J, Stamatelopoulos SF, Tsangaris SG (2004) New aspects on the role of blood pressure and arterial stiffness in mechanical assistance by intra-aortic balloon pump: in-vitro data and their application in clinical practice. Artif Organs 28:717–727

    Article  PubMed  Google Scholar 

  13. Kim SY, Euler DE, Jacobs WR, Montoya A, Sullivan HJ, Lonchyna VA, Pifarré R (1996) Arterial impedance in patients during intraaortic balloon counterpulsation. Ann Thorac Surg 61:888–894

    Article  PubMed  CAS  Google Scholar 

  14. Stefanadis C, Dernellis J, Tsiamis E, Stratos C, Kallikazaros I, Toutouzas P (1998) Aortic function in patients during intra-aortic balloon pumping determined by the pressure–diameter relation. J Thorac Cardiovasc Surg 116:1052–1059

    Article  PubMed  CAS  Google Scholar 

  15. Cabrera-Fischer EI, Christen AI, de Forteza E, Risk MR (1999) Dynamic abdominal and thoracic aortomyoplasty in heart failure: assessment of counterpulsation. Ann Thorac Surg 67:1022–1029

    Article  PubMed  CAS  Google Scholar 

  16. Cabrera-Fischer EI, de Forteza E, Risk MR, Nicolini GA, Camus JM, Pessana FM (2004) Juxtaaortic counterpulsation: comparison with intraaortic counterpulsation in an animal model of acute heart failure. ASAIO J 50:311–315

    PubMed  Google Scholar 

  17. Cabrera-Fischer EI, Bia D, Camus JM, Zócalo Y, de Forteza E, Armentano RL (2008) Effects of intra-aortic counterpulsation on aortic wall energetics and damping: in vivo experiments. ASAIO J 54:44–49

    Article  Google Scholar 

  18. Bia D, Armentano R, Craiem D, Grignola J, Ginés F, Simon A, Levenson J (2004) Smooth muscle role on pulmonary arterial function during acute pulmonary hypertension in sheep. Acta Physiol Scand 181:359–366

    Article  PubMed  CAS  Google Scholar 

  19. Li JK-J (1986) Time domain resolution of forward and reflected waves in the aorta. IEEE Trans Biomed Eng 33:783–785

    Article  PubMed  CAS  Google Scholar 

  20. Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2:121–143

    Article  PubMed  CAS  Google Scholar 

  21. Bia D, Barra JG, Grignola JC, Ginés FF, Armentano RL (2005) Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. J Appl Physiol 98:605–613

    Google Scholar 

  22. Kelly R, Hayward C, Avolio A, O’Rourke M (1989) Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80:1652–1659

    Article  PubMed  CAS  Google Scholar 

  23. Berman A (2003) Effects of body surface area estimates on predicted energy requirements and heat stress. J Dairy Sci 86:3605–3610

    Article  PubMed  CAS  Google Scholar 

  24. Redaelli A, Montevecchi FM (1998) Intraventricular pressure drop and aortic blood acceleration as indices of cardiac inotropy: a comparison with the first derivative of aortic pressure based on computer fluid dynamics. Med Eng Phys 20:231–241

    Article  PubMed  CAS  Google Scholar 

  25. Parissis H, Leotsinidis M, Dougenis D, Richens D (2007) The way the intra-aortic balloon catheter moves within the aorta as a possible mechanism of balloon associated morbidity. Interact Cardiovasc Thorac Surg 6:425–429

    Article  PubMed  Google Scholar 

  26. Tierney G, Parissis H, Baker M, Austin D, Clelland C, Richens D (1997) An experimental study of intra aortic balloon pumping within the intact human aorta. Eur J Cardiothorac Surg 12:486–493

    Article  PubMed  CAS  Google Scholar 

  27. Papaioannou TG, Lekakis JP, Dagre AG, Stamatelopoulos KS, Terrovitis J, Gialafos EJ, Kanakakis J, Nanas J, Stamatelopoulos SF, Moulopoulos S (2001) Arterial compliance is an independent factor predicting acute hemodynamic performance of intra-aortic balloon counterpulsation. Int J Artif Organs 24:478–483

    PubMed  CAS  Google Scholar 

  28. Borlaug BA, Kass DA (2008) Ventricular–vascular interaction in heart failure. Heart Fail Clin 4:23–36

    Article  PubMed  Google Scholar 

  29. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T (2006) Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol (Oxf) 188:15–20

    Article  CAS  Google Scholar 

  30. Segers P, Stergiopulos N, Westerhof N (2002) Relation of effective arterial elastance to arterial system properties. Am J Physiol Heart Circ Physiol 282:H1041–H1046

    PubMed  CAS  Google Scholar 

  31. Bia D, Zócalo Y, Armentano R, Laza S, Pérez H, Craiem D, Saldías M, Alvarez I (2009) Non-invasive biomechanical evaluation of implanted human cryopreserved arterial homografts: comparison with pre-implanted cryografts and arteries from human donors and recipients. Ann Biomed Eng 37:1273–1286

    Article  PubMed  Google Scholar 

  32. Kolyva C, Pantalos GM, Giridharan GA, Pepper JR, Khir AW (2009) Discerning aortic waves during intra-aortic balloon pumping and their relation to benefits of counterpulsation in humans. J Appl Physiol 107:1497–1503

    Article  PubMed  Google Scholar 

  33. Liu J, Cao TS, Duan YY, Yang YL, Yuan LJ (2011) Effects of cold pressor-induced sympathetic stimulation on the mechanical properties of common carotid and femoral arteries in healthy males. Heart Vessels 26:214–221

    Article  PubMed  CAS  Google Scholar 

  34. Biglino G, Whitehorne M, Pepper JR, Khir AW (2008) Pressure and flow-volume distribution associated with intra-aortic balloon inflation: an in vitro study. Artif Organs 32:19–27

    PubMed  Google Scholar 

  35. Biglino G, Kolyva C, Whitehorne M, Pepper JR, Khir AW (2010) Variations in aortic pressure affect the mechanics of the intraaortic balloon: an in vitro investigation. Artif Organs 34:546–553

    Article  PubMed  Google Scholar 

  36. Kolyva C, Pantalos GM, Pepper JR, Khir AW (2010) How much of the intraaortic balloon volume is displaced toward the coronary circulation? J Thorac Cardiovasc Surg 140:110–116

    Article  PubMed  Google Scholar 

  37. Van Trigt P, Christian CC, Fagraeus L, Spray TL, Peyton RB, Pellom GL, Wechsler AS (1984) Myocardial depression by anesthetic agents (halothane, enflurane and nitrous oxide): quantitation based on end-systolic pressure–dimension relations. Am J Cardiol 53:243–247

    Article  PubMed  Google Scholar 

  38. Hettrick DA, Pagel PS, Warltier DC (1996) Isoflurane and halothane produce similar alterations in aortic distensibility and characteristic aortic impedance. Anesth Analg 83:1166–1172

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Favaloro University (Argentina), the Agencia Nacional de Investigación e Innovación (ANII; Grants: FCE-2007-635 and FCE-2007-638; Uruguay) and PEDECIBA-Biología (Uruguay).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Bia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bia, D., Cabrera-Fischer, E.I., Zócalo, Y. et al. Intra-aortic balloon pumping reduces the increased arterial load caused by acute cardiac depression, modifying central and peripheral load determinants in a time- and flow-related way. Heart Vessels 27, 517–527 (2012). https://doi.org/10.1007/s00380-011-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0203-8

Keywords

Navigation