Skip to main content
Log in

L/N-type calcium channel blocker suppresses reflex aldosterone production induced by antihypertensive action

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The L/N-type calcium channel blocker cilnidipine has been shown to suppress aldosterone production induced by angiotensin II (Ang II) in vitro. In addition, cilnidipine also suppresses the reflex tachycardia induced by its antihypertensive action in vivo. We investigated the effects of cilnidipine on the reflex aldosterone production induced by its antihypertensive action, to identify the differences in the effects of cilnidipine from those of the L-type calcium channel blocker nifedipine. Male SHR/Izm rats were anesthetized by intraperitoneal injection of pentobarbital sodium, and administered an intravenous infusion of saline supplemented or not with Ang II for 30 min. Blood pressure was monitored continuously in the femoral artery. Each of the calcium channel blockers under study was administered intravenously as a bolus through the femoral vein 1 min after the start of the Ang II infusion, and blood samples were collected 30 min after the start of the Ang II infusion. Following administration at nonhypotensive doses, all calcium channel blockers tended to decrease the plasma aldosterone. In particular, cilnidipine significantly suppressed the plasma aldosterone levels. On the other hand, under the condition of Ang II-induced hypertension, administration of a hypotensive dosage of cilnidipine showed no effect on the plasma aldosterone levels, whereas a hypotensive dosage of nifedipine significantly increased the plasma aldosterone levels. Our results suggest that the L/N-type calcium channel blocker cilnidipine reduces the plasma aldosterone level by suppressing the aldosterone production induced by reflex upregulation of the renin–angiotensin–aldosterone system associated with reduction of the blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leenen FH (1996) Clinical relevance of 24 h blood pressure control by 1,4-dihydropyridines. Am J Hypertens 9:97S–104S

    PubMed  CAS  Google Scholar 

  2. Lindqvist M, Kahan T, Melcher A, Ekholm M, Hjemdahl P (2007) Long-term calcium antagonist treatment of human hypertension with mibefradil or amlodipine increases sympathetic nerve activity. J Hypertens 25:169–175

    Article  PubMed  CAS  Google Scholar 

  3. van Zwieten PA, de Jonge A (1986) Interaction between the adrenergic and renin–angiotensin–aldosterone-systems. Postgrad Med J 62(Suppl 1):23–27

    PubMed  Google Scholar 

  4. Holmer SR, Kaissling B, Putnik K, Pfeifer M, Kramer BK, Riegger GA, Kurtz A (1997) Beta-adrenergic stimulation of renin expression in vivo. J Hypertens 15:1471–1479

    Article  PubMed  CAS  Google Scholar 

  5. Goldsmith SR (2004) Interactions between the sympathetic nervous system and the RAAS in heart failure. Curr Heart Fail Rep 1(2):45–50

    Article  PubMed  Google Scholar 

  6. Zannad F, McMurray JJ, Drexler H, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pitt B (2010) Rationale and design of the Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure (EMPHASIS-HF). Eur J Heart Fail 12(6):617–622

    Article  PubMed  CAS  Google Scholar 

  7. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M, Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14):1309–1321

    Article  PubMed  CAS  Google Scholar 

  8. Uneyama H, Uchida H, Konda T, Yoshimoto R, Akaike N (1999) Selectivity of dihydropyridines for cardiac L-type and sympathetic N-type Ca2+ channels. Eur J Pharmacol 373(1):93–100

    Article  PubMed  CAS  Google Scholar 

  9. Hosono M, Himura T, Watanabe K, Hayashi Y, Ohnishi H, Takata Y, Kato H (1995) Inhibitory effect of cilnidipine on pressor response to acute cold stress in spontaneously hypertensive rats. Jpn J Pharmacol 69:119–125

    Article  PubMed  CAS  Google Scholar 

  10. Takahara A, Dohmoto H, Hisa H, Satoh S, Yoshimoto R (1997) Cilnidipine attenuates renal nerve stimulation-induced renal vasoconstriction and antinatriuresis in anesthetized dogs. Jpn J Pharmacol 75:27–32

    Article  PubMed  CAS  Google Scholar 

  11. Konda T, Takahara A, Maeda K, Dohmoto H, Yoshimoto R (2001) Effects of a dual L/N-type Ca2+ channel blocker cilnidipine on neurally mediated chronotropic response in anesthetized dogs. Eur J Pharmacol 413:117–120

    Article  PubMed  CAS  Google Scholar 

  12. Tan HW, Li L, Zhang W, Ma ZY, Zhong XZ, Li JJ, Wang Y (2005) Effects of cilnidipine on fibrinolysis in Chinese hypertensive patients. Clin Drug Investig 25(12):777–783

    Article  PubMed  CAS  Google Scholar 

  13. Hoshide S, Kario K, Ishikawa J, Eguchi K, Shimada K (2005) Comparison of the effects of cilnidipine and amlodipine on ambulatory blood pressure. Hypertens Res 28(12):1003–1008

    Article  PubMed  CAS  Google Scholar 

  14. Konda T, Enomoto A, Aritomi S, Niinuma K, Koganei H, Ogawa T, Nitta K (2009) Different effects of L/N-type and L-type calcium channel blockers on the renin–angiotensin–aldosterone system in SHR/Izm. Am J Nephrol 30(2):155–161

    Article  PubMed  CAS  Google Scholar 

  15. Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M (2011) Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis. Hypertens Res 34(2):193–201

    Article  PubMed  CAS  Google Scholar 

  16. Yoneda M, Sanada H, Yatabe J, Midorikawa S, Hashimoto S, Sasaki M, Katoh T, Watanabe T, Andrews PM, Jose PA, Felder RA (2005) Differential effects of angiotensin II type-1 receptor antisense oligonucleotides on renal function in spontaneously hypertensive rats. Hypertension 46:58–65

    Article  PubMed  CAS  Google Scholar 

  17. Isaka T, Ikeda K, Takada Y, Inada Y, Tojo K, Tajima N (2009) Azelnidipine inhibits aldosterone synthesis and secretion in human adrenocortical cell line NCI-H295R. Eur J Pharmacol 605(1–3):49–52

    Article  PubMed  CAS  Google Scholar 

  18. Zhang W, Wang Z (2001) Resetting baroreceptors to a lower arterial pressure level by enalapril avoids baroreflex mediated activation of sympathetic nervous system by nifedipine. Life Sci 68(25):2769–2779

    Article  PubMed  CAS  Google Scholar 

  19. Takahara A, Nakamura Y, Wagatsuma H, Aritomi S, Nakayama A, Satoh Y, Akie Y, Sugiyama A (2009) Long-term blockade of L/N-type Ca(2+) channels by cilnidipine ameliorates repolarization abnormality of the canine hypertrophied heart. Br J Pharmacol 158(5):1366–1374

    Article  PubMed  CAS  Google Scholar 

  20. Toba H, Yoshida M, Tojo C, Nakano A, Oshima Y, Kojima Y, Noda K, Wang J, Kobara M, Nakata T (2011) L/N-type calcium channel blocker cilnidipine ameliorates proteinuria and inhibits the renal renin–angiotensin–aldosterone system in deoxycorticosterone acetate-salt hypertensive rats. Hypertens Res 34(4):521–529

    Article  PubMed  CAS  Google Scholar 

  21. Konoshita T, Makino Y, Kimura T, Fujii M, Wakahara S, Arakawa K, Inoki I, Nakamura H, Miyamori I, Genomic Disease Outcome Consortium Study Investigators (2010) A new-generation N/L-type calcium channel blocker leads to less activation of the renin–angiotensin system compared with conventional L type calcium channel blocker. J Hypertens 28(10):2156–2160

    PubMed  CAS  Google Scholar 

  22. Dostal DE, Baker KM (1999) The cardiac renin–angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85:643–650

    Article  PubMed  CAS  Google Scholar 

  23. Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, Krieger JE, Brum PC (2008) The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 294(1):R26–R32

    Article  PubMed  CAS  Google Scholar 

  24. Zhao Q, Wu TG, Lin Y, Li B, Luo JY, Wang LX (2010) Low-dose nesiritide improves renal function in heart failure patients following acute myocardial infarction. Heart Vessels 25(2):97–103

    Article  PubMed  Google Scholar 

  25. Uneyama H, Takahara A, Dohmoto H, Yoshimoto R, Inoue K, Akaike N (1997) Blockade of N-type Ca2+ current by cilnidipine (FRC-8653) in acutely dissociated rat sympathetic neurones. Br J Pharmacol 122:37–42

    Article  PubMed  CAS  Google Scholar 

  26. Sakata K, Shirotani M, Yoshida H, Nawada R, Obayashi K, Togi K, Miho N (1999) Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension 33:1447–1452

    Article  PubMed  CAS  Google Scholar 

  27. Aritomi S, Koganei H, Wagatsuma H, Mitsui A, Ogawa T, Nitta K, Konda T (2010) The N-type and L-type calcium channel blocker cilnidipine suppresses renal injury in Dahl rats fed a high-salt diet. Heart Vessels 25(6):549–555

    Article  PubMed  Google Scholar 

  28. Morimoto S, Yano Y, Maki K, Iwasaka T (2007) Renal and vascular protective effects of cilnidipine in patients with essential hypertension. J Hypertens 25(10):2178–2183

    Article  PubMed  CAS  Google Scholar 

  29. Miwa Y, Tsuchihashi T, Ohta Y, Tominaga M, Kawano Y, Sasaguri T, Ueno M, Matsuoka H (2010) Antiproteinuric effect of cilnidipine in hypertensive Japanese treated with renin–angiotensin-system inhibitors—a multicenter, open, randomized trial using 24-hour urine collection. Clin Exp Hypertens 32(6):400–405

    Article  PubMed  CAS  Google Scholar 

  30. Fujita T, Ando K, Nishimura H, Ideura T, Yasuda G, Isshiki M, Takahashi K; Cilnidipine versus Amlodipine Randomised Trial for Evaluation in Renal Disease(CARTER) Study Investigators (2007) Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin–angiotensin inhibition in hypertensive patients with chronic renal disease. Kidney Int 72(12):1543–1549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuka Aritomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aritomi, S., Konda, T. & Yoshimura, M. L/N-type calcium channel blocker suppresses reflex aldosterone production induced by antihypertensive action. Heart Vessels 27, 419–423 (2012). https://doi.org/10.1007/s00380-011-0191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0191-8

Keywords

Navigation