Skip to main content

Advertisement

Log in

Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Recent clinical studies have revealed that the expression of endoglin, an accessory protein for the TGF-β receptor, is increased in patients with atherosclerotic diseases. The plasma endoglin level is thought to represent endothelial activation, inflammation, and senescence. To clarify the significance of plasma endoglin in chronic coronary artery disease. Human umbilical vein endothelial cells (HUVECs) were cultured to examine changes in soluble endoglin (s-endoglin) levels caused by atherogenic stimulation in vitro. We studied 318 patients with stable coronary artery disease who underwent a successful percutaneous coronary intervention (PCI). Patients with acute coronary syndrome were excluded. Major adverse cardiovascular events (MACE) were congestive heart failure, acute myocardial infarction, stroke, and sudden cardiac death. All patients were followed-up to examine MACE after the procedure. We confirmed that the levels of s-endoglin was increased in the culture medium of HUVECs by senescence, tumor necrosis factor-α and hydrogen peroxide. In a clinical study, mean follow-up period was 1055 ± 612 days (49–2136 days) with 27 incidents of MACE (8.5%). We divided patients into three groups according to the plasma s-endoglin levels. Kaplan–Meier curves revealed that the highest endoglin group had a significantly higher MACE rate than the lowest endoglin group (log-rank test, p = 0.009). A Cox proportional hazards model showed that chronic kidney disease, left ventricular ejection fraction and s-endoglin level were significant factors to predict MACE. Plasma endoglin could be a marker to predict cardiovascular events in patients with chronic coronary artery disease after PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dallas N, Samuel S, Xia L, Fan F, Gray M, Lim S, Ellis L (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937

    Article  PubMed  CAS  Google Scholar 

  2. McAllister K, Grogg K, Johnson D, Gallione C, Baldwin M, Jackson C, Helmbold E, Markel D, McKinnon W, Murrell J, McCormick M, Pericak-Vance M, Heutink P, Oostra B, Haitjema T, Westerman C, Porteous M, Guttmacher A, Letarte M, Marchuk D (1994) Endoglin, a TGF-bold beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  PubMed  CAS  Google Scholar 

  3. Berg J, Porteous M, Reinhardt D, Gallione C, Holloway S, Umasunthar T, Lux A, McKinnon W, Marchuk D, Guttmacher A (2003) Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK 1 mutations. J Med Genet 40:585–590

    Article  PubMed  CAS  Google Scholar 

  4. Govani F, Shovlin C (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17:860–871

    Article  PubMed  CAS  Google Scholar 

  5. Piao M, Tokunaga O (2006) Significant expression of endoglin (CD105), TGFβ-1 and TGFβ R-2 in the atherosclerotic aorta: an immunohistological study. J Atheroscler Thromb 13:82–89

    Article  PubMed  CAS  Google Scholar 

  6. Moses J, Leon M, Popma J, Fitzgerald P, Holmes D, O’Shaughnessy C, Caputo R, Kereiakes D, Williams D, Teirstein P, Jaeger J, Kuntz RE (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    Article  PubMed  CAS  Google Scholar 

  7. Holmes DR Jr, Leon M, Moses J, Popma J, Cutlip D, Fitzgerald P, Brown C, Fischell T, Wong S, Midei M, Snead D, Kuntz R (2004) Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation 109:634–640

    Article  PubMed  Google Scholar 

  8. Weisz G, Leon M, Holmes DR Jr, Kereiakes D, Clark M, Cohen B, Ellis S, Coleman P, Hill C, Shi C, Cutlip D, Kuntz R, Moses J (2006) Two-year outcomes after sirolimus-eluting stent implantation: results from the Sirolimus-Eluting Stent in de Novo Native Coronary Lesions (SIRIUS) trial. J Am Coll Cardiol 47:1350–1355

    Article  PubMed  CAS  Google Scholar 

  9. Weisz G, Leon M, Holmes DR Jr, Kereiakes D, Popma J, Teirstein P, Cohen S, Wang H, Cutlip D, Moses J (2009) Five-year follow-up after sirolimus-eluting stent implantation: results of the SIRIUS (Sirolimus-Eluting Stent in de-novo Native Coronary Lesions) trial. J Am Coll Cardiol 53:1488–1497

    Article  PubMed  CAS  Google Scholar 

  10. Kastrati A, Mehilli J, Pache J, Kaiser C, Valgimigli M, Kelbæk H, Menichelli M, Sabaté M, Suttorp M, Baumgart D, Seyfarth M, Pfisterer M, Schömig A (2007) Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med 356:1030–1039

    Article  PubMed  CAS  Google Scholar 

  11. Ninomiya J, L’Italien G, Criqui M, Whyte J, Gamst A, Chen R (2004) Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 109:42–46

    Article  PubMed  Google Scholar 

  12. Ledue T, Weiner D, Sipe J, Poulin S, Collins M, Rifai N (1998) Analytical evaluation of particle-enhanced immunonephelometric assays for C-reactive protein, serum amyloid A and mannose-binding protein in human serum. Ann Clin Biochem 35:745–753

    PubMed  CAS  Google Scholar 

  13. Folland E, Parisi A, Moynihan P, Jones D, Feldman C, Tow D (1979) Assessment of left ventricular ejection fraction and volumes by real-time, two-dimensional echocardiography. A comparison of cineangiographic and radionuclide techniques. Circulation 60:760–766

    Article  PubMed  CAS  Google Scholar 

  14. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR (2009) Revised equations for estimated gfr from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  PubMed  CAS  Google Scholar 

  15. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y, Bdolah Y, Lim K, Yuan H, Libermann T, Stillman I, Roberts D, D’Amore P, Epstein F, Sellke F, Romero R, Sukhatme V, Letarte M, Karumanchi S (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    Article  PubMed  CAS  Google Scholar 

  16. Richard J, Levine R, Lam C, Qian C, Yu K, Maynard S, Sachs B, Sibai B, Epstein F, Romero R, Thadhani R, Karumanchi S (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005

    Article  Google Scholar 

  17. Fonsatti E, Sigalotti L, Arslan P, Altomonte M, Maio M (2003) Emerging role of endoglin (CD105) as a marker of angiogenesis with clinical potential in human malignancies. Curr Cancer Drug Targets 3:427–432

    Article  PubMed  CAS  Google Scholar 

  18. Wipff J, Avouac J, Borderie D, Zerkak D, Lemarechal H, Kahan A, Boileau C, Allanore Y (2008) Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin. Rheumatology 47:972–975

    Article  PubMed  CAS  Google Scholar 

  19. Conley B, Smith J, Guerrero-Esteo M, Bernabeu C, Vary C (2000) Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153:323–335

    Article  PubMed  CAS  Google Scholar 

  20. Torsney E, Charlton R, Parums D, Collis M, Arthur H (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51:464–470

    Article  PubMed  CAS  Google Scholar 

  21. Ma X, Labinaz M, Goldstein J, Miller H, Keon W, Letarte M, O’Brien E (2000) Endoglin is overexpressed after arterial injury and is required for transforming growth factor-beta-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 20:2546–2552

    Article  PubMed  CAS  Google Scholar 

  22. Lebrin F, Goumans M, Jonker L, Carvalho R, Valdimarsdottir G, Thorikay M, Mummery C, Arthur H, ten Dijke P (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23:4018–4028

    Article  PubMed  CAS  Google Scholar 

  23. Li C, Bethell H, Wilson P, Bhatnagar D, Walker M, Kumar S (2000) The significance of CD105, TGFbeta and CD105/TGFbeta complexes in coronary artery disease. Atherosclerosis 152:249–256

    Article  PubMed  CAS  Google Scholar 

  24. Stefoni S, Cianciolo G, Donati G, Dormi A, Silvestri M, Coli L, De Pasclis A, Lannelli S (2002) Low TGF-beta1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney Int 61:324–335

    Article  PubMed  CAS  Google Scholar 

  25. Foidart J, Schaaps J, Chantraine F, Munaut C, Lorquet S (2009) Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia-a step forward but not the definitive answer. J Reprod Immuno 82:106–111

    Article  CAS  Google Scholar 

  26. Blanco F, Grande M, Langa C, Oujo B, Velasco S, Rodriguez-Barbero A, Perez-Gomez E, Quintanilla M, López-Novoa J, Bernabeu C (2008) S-endoglin expression is induced in senescent endothelial cells and contributes to vascular pathology. Circ Res 103:1383–1392

    Article  PubMed  CAS  Google Scholar 

  27. Paquet M, Pece-Barbara N, Vera S, Cymerman U, Karabegovic A, Shovlin C, Letarte M (2001) Analysis of several endoglin mutants reveals no endogenous mature or secreted protein capable of interfering with normal endoglin function. Hum Mol Genet 15:1347–1357

    Article  Google Scholar 

  28. Kimura H, Hiramitsu S, Miyagishima K, Mori K, Yoda R, Kato S, Kato Y, Morimoto S, Hishida H, Ozaki Y (2010) Cardio-renal interaction: impact of renal function and anemia on the outcome of chronic heart failure. Heart Vessels 25:306–312

    Article  PubMed  Google Scholar 

  29. Coral-Alvarado P, Garces M, Caminos J, Iglesias-Gamarra A, Restrepo J, Quintana G (2010) Serum endoglin levels in patients suffering from systemic sclerosis and elevated systolic pulmonary arterial pressure. Int J Rheumatol (Epub 2010 Aug 24)

Download references

Acknowledgments

We thank Ms. Takako Takagi for her wonderful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Hojo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikemoto, T., Hojo, Y., Kondo, H. et al. Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels 27, 344–351 (2012). https://doi.org/10.1007/s00380-011-0163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0163-z

Keywords

Navigation