Skip to main content

Advertisement

Log in

Dilatation of the ascending aorta and serum alpha 1-antitrypsin level in patients with bicuspid aortic valve

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Predictors of aortic dilatation are not well described in patients with bicuspid aortic valves (BAV). This study sought to examine the relationship between proximal aortic dilatation and matrix metalloproteinase-9 (MMP-9) and alpha 1-antitrypsin (α1AT) levels in patients with BAV. All patients underwent echocardiography using a standard protocol, and aortic measurements were taken in end-diastole. We studied 82 patients with BAV and categorized them into two groups according to aortic dimensions corrected for body surface area and age. The plasma level of α1AT was routinely determined using a BN ProSpec analyzer (Siemens Healthcare Diagnostics, Marburg, Germany), and that of MMP-9 were determined by ELISA (RayBiotech Inc. Norcross, GA, USA). Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS; SPSS Inc., Chicago, IL, USA) software for Windows version 12. This study included patients with BAV with no or mild valvular impairment. There were no significant differences between groups in terms of gender, body surface area, associated hypertension, diabetes mellitus, hyperlipidemia, or smoking. The mean ascending aortic diameter was 4.38 ± 0.5 mm in group 1 and 3.34 ± 0.35 mm in group 2 (p < 0.001). Plasma concentration of α1AT in patients with ascending aortic dilatation was significantly lower than that in the non-dilated group (1.32 ± 0.27 and 1.49 ± 0.25 g/l, respectively; p = 0.005). However, no significant difference was found in the MMP-9 level between the two groups (336.49 ± 233.11 and 336.39 ± 268.072 pg/ml, respectively; p = 0.96). We observed a significantly negative correlation between ascending aortic diameter and α1AT level (r = −0.300, p = 0.006) and a positive correlation between ascending aortic diameter and age (r = 0.413, p < 0.001). No significant correlation was found between plasma MMP-9 concentration and ascending aortic diameter (r = −0.008, p = 0.94). A multiple linear regression analysis was performed, including age, α1AT level, MMP-9 level, and left ventricular diastolic diameter. In this analysis, α1AT level and age were the independent predictors of aortic dilatation (p = 0.03 and p = 0.02, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guntheroth WG (2008) A critical review of the American College of Cardiology/American Heart Association practice guidelines on bicuspid aortic valve with dilated ascending aorta. Am J Cardiol 102:107–110

    Article  PubMed  Google Scholar 

  2. Tutar E, Ekici F, Atalay S, Nacar N (2005) The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am Heart J 150:513–515

    Article  PubMed  Google Scholar 

  3. Lindsay J Jr (1988) Coarctation of the aorta, bicuspid aortic valve and abnormal ascending aortic wall. Am J Cardiol 61:182–184

    Article  PubMed  Google Scholar 

  4. Braverman AC (1996) Bicuspid aortic valve and associated aortic wall abnormalities. Curr Opin Cardiol 11:501–503

    Article  PubMed  CAS  Google Scholar 

  5. Ferencik M, Pape LA (2003) Changes in size of ascending aorta and aortic valve function with time in patients with congenitally bicuspid aortic valves. Am J Cardiol 92:43–46

    Article  PubMed  Google Scholar 

  6. Roberts WC (1970) The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol 26:72–83

    Article  PubMed  CAS  Google Scholar 

  7. de Sa M, Moshkovitz Y, Butany J, David TE (1999) Histologic abnormalities of the ascending aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical relevance to the Ross procedure. J Thorac Cardiovasc Surg 118:588–594

    Article  PubMed  Google Scholar 

  8. Parai JL, Masters RG, Walley VM, Stinson WA, Veinot JP (1999) Aortic medial changes associated with bicuspid aortic valve: myth or reality? Can J Cardiol 15:1233–1238

    PubMed  CAS  Google Scholar 

  9. Nistri S, Sorbo MD, Basso C, Thiene G (2002) Bicuspid aortic valve: abnormal aortic elastic properties. J Heart Valve Dis 11:369–373

    PubMed  Google Scholar 

  10. Niwa K, Perloff JK, Bhuta SM, Laks H, Drinkwater DC, Child JS, Miner PD (2001) Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation 103:393–400

    Article  PubMed  CAS  Google Scholar 

  11. Busuttil RW, Rinderbriecht H, Flesher A, Carmack C (1982) Elastase activity: the role of elastase in aortic aneurysm formation. J Surg Res 32:214–217

    Article  PubMed  CAS  Google Scholar 

  12. Crystal RG (1990) Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 85:1343–1352

    Article  PubMed  CAS  Google Scholar 

  13. Lomas DA, Parfrey H (2004) Alpha 1-antitrypsin deficiency. 4: molecular pathophysiology. Thorax 59:529–535

    Article  PubMed  CAS  Google Scholar 

  14. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  15. Cohen JR, Mandell C, Chang JB, Wise L (1988) Elastin metabolism of the infrarenal aorta. J Vasc Surg 7:210–214

    PubMed  CAS  Google Scholar 

  16. Cohen JR, Sarfati I, Ratner L, Tilson D (1990) Alpha 1-antitrypsin phenotypes in patients with abdominal aortic aneurysms. J Surg Res 49:319–321

    Article  PubMed  CAS  Google Scholar 

  17. Vega de Céniga M, Esteban M, Quintana JM, Barba A, Estallo L, de la Fuente N, Viviens B, Martin-Ventura JL (2009) Search for serum biomarkers associated with abdominal aortic aneurysm growth—a pilot study. Eur J Vasc Endovasc Surg 37:297–299

    Article  PubMed  Google Scholar 

  18. Lesauskaite V, Tanganelli P, Sassi C, Neri E, Diciolla F, Ivanoviene L, Epistolato MC, Lalinga AV, Alessandrini C, Spina D (2001) Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum Pathol 32:1003–1011

    Article  PubMed  CAS  Google Scholar 

  19. McMillan WD, Tamarina NA, Cipollone M, Johnson DA, Parker MA, Pearce WH (1997) Size matters: the relationship between MMP-9 expression and aortic diameter. Circulation 96:2228–2232

    Article  PubMed  CAS  Google Scholar 

  20. Golledge J, Tsao PS, Dalman RL, Norman PE (2008) Circulating markers of abdominal aortic aneurysm presence and progression. Circulation 118:2382–2392

    Article  PubMed  Google Scholar 

  21. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J (1989) Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol 64:507–512

    Article  PubMed  CAS  Google Scholar 

  22. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  23. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  24. Aboulhosn J, Child JS (2006) Left ventricular outflow obstruction: subaortic stenosis, bicuspid aortic valve, supravalvar aortic stenosis, and coarctation of the aorta. Circulation 114:2412–2422

    Article  PubMed  Google Scholar 

  25. Elzouki AN, Eriksson S (1994) Abdominal aortic aneurysms and alpha 1-antitrypsin deficiency. J Intern Med 236:587–591

    Article  PubMed  CAS  Google Scholar 

  26. St Jean P, Hart B, Webster M, Steed D, Adamson J, Powell J, Ferrell R (1996) Alpha-1-antitrypsin deficiency in aneurysmal disease. Hum Hered 46:92–97

    Article  PubMed  CAS  Google Scholar 

  27. Elzouki AN, Rydén Ahlgren A, Länne T, Sonesson B, Eriksson S (1999) Is there a relationship between abdominal aortic aneurysms and alpha 1-antitrypsin deficiency (PiZ)? Eur J Vasc Endovasc Surg 17:149–154

    Article  PubMed  CAS  Google Scholar 

  28. Parks WC (2002) A confederacy of proteinases. J Clin Invest 110:613–614

    PubMed  CAS  Google Scholar 

  29. Naito Y, Tsujino T, Lee-Kawabata M, Matsumoto M, Ezumi A, Nakao S, Goda A, Ohyanagi M, Masuyama T (2009) Matrix metalloproteinase-1 and -2 levels are differently regulated in acute exacerbation of heart failure in patients with and without left ventricular systolic dysfunction. Heart Vessels 24:181–186

    Article  PubMed  Google Scholar 

  30. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    PubMed  CAS  Google Scholar 

  31. McMillan WD, Pearce WH (1999) Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J Vasc Surg 29:122–127

    Article  PubMed  CAS  Google Scholar 

  32. Koullias GJ, Korkolis DP, Ravichandran P, Psyrri A, Hatzaras I, Elefteriades JA (2004) Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur J Cardiothorac Surg 26:1098–1103

    Article  PubMed  Google Scholar 

  33. Boyum J, Fellinger EK, Schmoker JD, Trombley L, McPartland K, Ittleman FP, Howard AB (2004) Matrix metalloproteinase activity in thoracic aortic aneurysms associated with bicuspid and tricuspid aortic valves. J Thorac Cardiovasc Surg 127:686–691

    Article  PubMed  CAS  Google Scholar 

  34. Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, Webb GD, Siu SC (2008) Outcomes in adults with bicuspid aortic valves. JAMA 300:1317–1325

    Article  PubMed  CAS  Google Scholar 

  35. LeMaire SA, Wang X, Wilks JA, Carter SA, Wen S, Won T, Leonardelli D, Anand G, Conklin LD, Wang XL, Thompson RW, Coselli JS (2005) Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res 123:40–48

    Article  PubMed  CAS  Google Scholar 

  36. Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, Butany J, Strauss BH, Weisel RD, David TE (2003) Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg 126:797–806

    Article  PubMed  Google Scholar 

  37. Kitzman DW, Scholz DG, Hagen PT, Ilstrup DM, Edwards WD (1988) Age-related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): a quantitative anatomic study of 765 specimens from subjects 20 to 99 years old. Mayo Clin Proc 63:137–146

    PubMed  CAS  Google Scholar 

  38. Cecconi M, Manfrin M, Moraca A, Zanoli R, Colonna PL, Bettuzzi MG, Moretti S, Gabrielli D, Perna GP (2005) Aortic dimensions in patients with bicuspid aortic valve without significant valve dysfunction. Am J Cardiol 95:292–294

    Article  PubMed  Google Scholar 

  39. Nistri S, Grande-Allen J, Noale M, Basso C, Siviero P, Maggi S, Crepaldi G, Thiene G (2008) Aortic elasticity and size in bicuspid aortic valve syndrome. Eur Heart J 29:472–479

    Article  PubMed  Google Scholar 

  40. Beroukhim RS, Kruzick TL, Taylor AL, Gao D, Yetman AT (2006) Progression of aortic dilatation in children with a functionally normal bicuspid aortic valve. Am J Cardiol 98:828–830

    Article  PubMed  Google Scholar 

  41. Braverman AC, Güven H, Beardslee MA, Makan M, Kates AM, Moon MR (2005) The bicuspid aortic valve. Curr Probl Cardiol 30:470–522

    Article  PubMed  Google Scholar 

  42. Schaefer BM, Lewin MB, Stout KK, Byers PH, Otto CM (2007) Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta. Am J Cardiol 99:686–690

    Article  PubMed  Google Scholar 

  43. Triantafyllidi H, Rizos I, Rallidis L, Tsikrikas S, Triantafyllis A, Ikonomidis I, Panou F, Rigopoulos A, Kremastinos DT (2010) Aortic distensibility associates with increased ascending thoracic aorta diameter and left ventricular diastolic dysfunction in patients with coronary artery ectasia. Heart Vessels 25:187–194

    Article  PubMed  Google Scholar 

  44. Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, Otto CM (2008) The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94:1634–1638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadriye Orta Kilickesmez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilickesmez, K.O., Abaci, O., Kocas, C. et al. Dilatation of the ascending aorta and serum alpha 1-antitrypsin level in patients with bicuspid aortic valve. Heart Vessels 27, 391–397 (2012). https://doi.org/10.1007/s00380-011-0161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0161-1

Keywords

Navigation