Skip to main content
Log in

Ox-LDL can enhance the interaction of mice natural killer cells and dendritic cells via the CD48-2B4 pathway

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The importance of the interaction between natural killer (NK) cells and dendritic cells (DCs) in the expansion of antiviral and antitumor immune responses is well documented; however, limited information on NK/DC interaction during atherosclerosis is available. Inflammation plays an important role in the development of atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is believed to play a critical role in the development and progression of atherosclerosis. In this study, we developed a NK/DC coculture system to examine the role of ox-LDL in modulating the interaction of mice NK cells and DCs. Fresh NK cells were cocultured with DCs in the absence or presence of ox-LDL. We examined the cytokines released during the interaction. This report provides the first evidence of an enhancement effect by ox-LDL on the NK/DC crosstalk. Notably, we found that ox-LDL significantly promoted the interaction of NK cells and DCs via CD48-2B4 contact-dependent mechanisms. These findings highlight the importance of NK/DCs crosstalk in atherosclerosis and provide new information about the possible mechanisms of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519

    Article  PubMed  CAS  Google Scholar 

  2. Bobryshev YV (2005) Identification of natural killer cells in human atherosclerotic plaque. Atherosclerosis 180:423–427

    Article  PubMed  CAS  Google Scholar 

  3. Hjerpe C, Johansson D, Hermansson A, Hansson GK (2010) Dendritic cells pulsed with malondialdehyde modified low density lipoprotein aggravate atherosclerosis in Apoe(−/−) mice. Atherosclerosis 209:436–441

    Article  PubMed  CAS  Google Scholar 

  4. Habets KLL, van Puijvelde GHM, van Duivenvoorde LM (2010) Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc Res 85:622–630

    Article  PubMed  CAS  Google Scholar 

  5. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  6. Hansson GK, Libby P, Schonbeck U (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Article  PubMed  CAS  Google Scholar 

  7. Curtiss LK, Kubo N, Schiller NK, Boisvert WA (2000) Participation of innate and acquired immunity in atherosclerosis. Immunol Res 21:167–176

    Article  PubMed  CAS  Google Scholar 

  8. Yao HC, Liu SQ, Yu K (2009) Interleukin-2 enhances the cytotoxic activity of circulating natural killer cells in patients with chronic heart failure. Heart Vessels 24:283–286

    Article  PubMed  Google Scholar 

  9. Trinchieri G (1998) Biology of natural killer cells. Adv Immunol 47:187

    Article  Google Scholar 

  10. Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996

    Article  PubMed  CAS  Google Scholar 

  11. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA (2004) NK cell and DC interactions. Trends Immunol 25:47

    Article  PubMed  CAS  Google Scholar 

  12. Lee KM, Bhawan S, Majima T (2003) Cutting edge: the NK cell receptor 2B4 augments antigen-specific T cell cytotoxicity through CD48 ligation on neighboring T cells. J Immunol 170:4881

    PubMed  CAS  Google Scholar 

  13. Sousa CR, Hieny S, Scharton-Kersten T, Jankovic D, Charest H (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186:1819

    Article  Google Scholar 

  14. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  PubMed  CAS  Google Scholar 

  15. Ferlazzo G, Munz C (2004) NK cell compartments and their activation by dendritic cells. J Immunol 172:1333–1339

    PubMed  CAS  Google Scholar 

  16. Borg C, Jalil A, Laderach D (2004) NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104:3267–3275

    Article  PubMed  CAS  Google Scholar 

  17. Osada T (2001) Peripheral blood dendritic cells, but not monocyte-derived dendritic cells, can augment human NK cell function. Cell Immunol 213:14–23

    Article  PubMed  CAS  Google Scholar 

  18. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133–146

    Article  PubMed  CAS  Google Scholar 

  19. Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335–341

    Article  PubMed  CAS  Google Scholar 

  20. Lee KM, Forman JP, McNerney ME, Stepp S (2005) Requirement of homotypic NK cell interactions through 2B4 (CD244)/CD48 in the generation of NK effector functions. Blood 10:1182

    Google Scholar 

  21. Assarsson E, Kambayashi T, Persson CM, Ljunggren HG (2005) 2B4 co-stimulation: NK cells and their control of adaptive immune responses. Mol Immunol 42:419–423

    Article  PubMed  CAS  Google Scholar 

  22. Nakajima H, Cella M, Langen H, Friedlein A, Colonna M (1999) Activating interactions in human NK cell recognition: the role of 2B4–CD48. Eur J Immunol 29:1676–1683

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez-Real JM, Ricart W (2003) Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 24:278–301

    Article  PubMed  CAS  Google Scholar 

  24. Crisby M, Kublickiene K, Henareh L (2009) Circulating levels of autoantibodies to oxidized low-density lipoprotein and C-reactive protein levels correlate with endothelial function in resistance arteries in men with coronary heart disease. Heart Vessels 24:90–95

    Article  PubMed  Google Scholar 

  25. Whitman SC, Rateri DL, Szilvassy SJ (2004) Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb Vasc Biol 24:1049–1054

    Article  PubMed  CAS  Google Scholar 

  26. Trinchieri G (1989) Biology of NK cells. Adv Immunol 47:187–376

    Article  PubMed  CAS  Google Scholar 

  27. Perussia B (1991) Lymphokine-activated killer cells, natural killer cells and cytokines. Curr Opin Immunol 3:49

    Article  PubMed  CAS  Google Scholar 

  28. Biron CA, Byron KS, Sullivan JL (1989) Severe herpes virus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    Article  PubMed  CAS  Google Scholar 

  29. Ruggeri L, Capanni M, Urbani E (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2029–2031

    Article  Google Scholar 

  30. Walzer T, Dalod M, Robbins SH (2005) Natural-killer cells and dendritic cells: “l’ union fait l force”. Blood 106:2252–2258

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405–411

    Article  PubMed  CAS  Google Scholar 

  32. Yu Y, Hagihara M, Ando K, Gansuvd B (2001) Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J Immunol 166:1590–1600

    PubMed  CAS  Google Scholar 

  33. Ferlazzo G, Pack M, Thomas D (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101:16606–16611

    Article  PubMed  CAS  Google Scholar 

  34. Moretta A (2002) Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat Rev Immunol 2:957–964

    Article  PubMed  CAS  Google Scholar 

  35. Loza MJ, Perussia B (2001) Final steps of natural killer cell maturation: a model for type 1-type 2 differentiation? Nat Immunol 2:917–924

    Article  PubMed  CAS  Google Scholar 

  36. Moretta A, Bottino C, Vitale M (2001) Activating receptors and co-receptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  PubMed  CAS  Google Scholar 

  37. Moretta A (2000) Natural cytotoxicity receptors that trigger human NK-mediated cytolysis. Immunol Today 21:228–234

    Article  PubMed  CAS  Google Scholar 

  38. Marcenaro E (2003) CD59 is physically and functionally associated with natural cytotoxicity receptors and activates human NK cell-mediated cytotoxicity. Eur J Immunol 33:3367–3376

    Article  PubMed  CAS  Google Scholar 

  39. Shibuya A (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581

    Article  PubMed  CAS  Google Scholar 

  40. Flaig RM, Stark S, Waltzl C (2004) Cutting edge: NTB-A activates NK cells via homophilic interaction. J Immunol 172:6524–6527

    PubMed  CAS  Google Scholar 

  41. Kambayashi T, Assarsson E, Chambers BJ, Ljunggren HG (2001) Cutting edge: regulation of CD8(+) T cell proliferation by 2B4/CD48 interactions. J Immunol 167:6706–6710

    PubMed  CAS  Google Scholar 

  42. Assarsson E, Kambayashi T, Schatzle JD, Cramer SO, Jensen PE (2004) NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions. J Immunol 173:174–180

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the Health Bureau of Zhejiang Province, China (grant no. 2008A075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, K., Ge, JH., Gu, SL. et al. Ox-LDL can enhance the interaction of mice natural killer cells and dendritic cells via the CD48-2B4 pathway. Heart Vessels 26, 637–645 (2011). https://doi.org/10.1007/s00380-010-0102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0102-4

Keywords

Navigation