Skip to main content
Log in

Cardiac and vascular gene profiles in an animal model of takotsubo cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We investigated cardiac and vascular gene profiles in response to immobilization stress (IMO) in rats, an animal model of emotional stress-induced takotsubo cardiomyopathy using microarray analysis, followed by re-confirmation with real-time reverse transcription-polymerase chain reaction. Expression levels of the identified genes were further estimated by pretreatment with an α1-adrenoceptor blocker and/or a β1-adrenoceptor blocker. In response to IMO, expression of 46 genes was significantly altered in the heart and that of 49 genes was significantly altered in the aorta. Pathway analysis with DAVID Bioinformatics Resources indicated that regulation of transcription and response to endogenous stimulation were the top two scoring pathways. Altered expression of cardiac genes was blunted by pretreatment with a β1-adrenoceptor blocker or α1 + β1-adrenoceptor blockers. In contrast, that of aortic genes was blunted by pretreatment with an α1-adrenoceptor blocker or α1 + β1-adrenoceptor blockers. Activation of α1-adrenoceptor in the blood vessels or activation of β1-adrenoceptors in the heart were mainly responsible for emotional stress-induced alteration of cardiac and vascular gene profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steptoe A, Brydon L (2009) Emotional triggering of cardiac events. Neurosci Biobehav Rev 33:63–70

    Article  PubMed  Google Scholar 

  2. Esler M (2009) Heart and mind: psychogenic cardiovascular disease. J Hypertens 27:692–695

    Article  PubMed  CAS  Google Scholar 

  3. Kurisu S, Sato H, Kawagoe T, Ishihara M, Shimatani Y, Nishioka K, Kono Y, Umemura T, Nakamura S (2002) Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: a novel cardiac syndrome mimicking acute myocardial infarction. Am Heart J 143:448–455

    Article  PubMed  Google Scholar 

  4. Akashi YJ, Goldstein DS, Barbaro G, Ueyama T (2008) Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation 118:2754–2762

    Article  PubMed  Google Scholar 

  5. Sato M, Fujita S, Saito A, Ikeda Y, Kitazawa H, Takahashi M, Ishiguro J, Okabe M, Nakamura Y, Nagai T, Watanabe H, Kodama M, Aizawa Y (2006) Increased incidence of transient left ventricular apical ballooning (so-called ‘Takotsubo’ cardiomyopathy) after the mid-Niigata Prefecture earthquake. Circ J 70:947–953

    Article  PubMed  Google Scholar 

  6. Jim MH, Chan AO, Tsui PT, Lau ST, Siu CW, Chow WH, Lau CP (2009) A new ECG criterion to identify takotsubo cardiomyopathy from anterior myocardial infarction: role of inferior leads. Heart Vessels 24:124–130

    Article  PubMed  Google Scholar 

  7. Mariscalco G, Cattaneo P, Rossi A, Baravelli M, Piffaretti G, Scannapieco A, Nassiacos D, Sala A (2010) Tako-tsubo cardiomyopathy complicated by ventricular septal perforation and septal dissection. Heart Vessels 25:73–75

    Article  PubMed  Google Scholar 

  8. Kvetnanský R, Goldstein DS, Weise VK, Holmes C, Szemeredi K, Bagdy G, Kopin IJ (1992) Effects of handling or immobilization on plasma levels of 3,4-dihydroxyphenylalanine, catecholamines, and metabolites in rats. J Neurochem 58:2296–2302

    Article  PubMed  Google Scholar 

  9. Ueyama T, Yoshida K, Senba E (2000) Stress-induced elevation of the ST segment in the rat electrocardiogram is normalized by an adrenoceptor blocker. Clin Exp Pharmacol Physiol 27:384–386

    Article  PubMed  CAS  Google Scholar 

  10. Ueyama T, Kasamatsu K, Yamamoto K, Yamamoto K, Tsuruo Y, Nishio I (2002) Emotional stress induces transient left ventricular hypo-contraction in the rat via activation of cardiac adrenoceptors—a possible animal model of tako-tsubo cardiomyopathy. Circ J 66:712–713

    Article  PubMed  Google Scholar 

  11. Ueyama T (2004) Emotional stress-induced Tako-tsubo cardiomyopathy: animal model and molecular mechanism. Ann N Y Acad Sci 1018:437–444

    Article  PubMed  CAS  Google Scholar 

  12. Ueyama T, Yoshida K, Senba E (1999) Emotional stress induces expression of immediate early genes in rat heart via activation of α- and β-adrenoceptors. Am J Physiol Heart and Circ Physiol 277:H1553–H1561

    CAS  Google Scholar 

  13. Ueyama T, Hano T, Kasamatsu K, Yamamoto K, Tsuruo Y, Nishio I (2003) Estrogen attenuates the emotional stress-induced cardiac responses in the animal model of tako-tsubo (Ampulla) cardiomyopathy. J Cardiovasc Pharmacol 42:S117–S119

    Article  PubMed  CAS  Google Scholar 

  14. Ueyama T, Tanioku T, Nuta J, Kujira K, Ito T, Nakai S, Tsuruo Y (2006) Estrogen alters c-Fos response to immobilization stress in the brain of ovariectomized rats. Brain Res 1084:67–79

    Article  PubMed  CAS  Google Scholar 

  15. Ueyama T, Ishikura F, Matsuda A, Asanuma T, Ueda K, Ichinose M, Kasamatsu K, Hano T, Akasaka T, Tsuruo Y, Morimoto K, Beppu S (2007) Chronic estrogen supplementation following ovariectomy improves the emotional stress-induced cardiovascular responses by indirect action on the nervous system and by direct action on the heart. Circ J 71:565–573

    Article  PubMed  CAS  Google Scholar 

  16. Ueyama T, Kasamatsu K, Hano T, Tsuruo Y, Ishikura F (2008) Catecholamines and estrogen are involved in the pathogenesis of emotional stress-induced acute heart attack. Ann N Y Acad Sci 1148:479–485

    Article  PubMed  CAS  Google Scholar 

  17. Zohlnhöfer D, Nührenberg TG, Haas F, Bengel F, Schömig A, Baeuerle PA, Schwaiger M (2008) Myocardial gene expression of matched hibernating and control tissue from patients with ischemic left ventricular dysfunction. Heart Vessels 23:230–242

    Article  PubMed  Google Scholar 

  18. Liu X, Serova L, Kvetnanský R, Sabban EL (2008) Identifying the stress transcriptome in the adrenal medulla following acute and repeated immobilization. Ann N Y Acad Sci 1148:1–28

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto Y, Tanahashi T, Kawai T, Chikahisa S, Katsuura S, Nishida K, Teshima-Kondo S, Sei H, Rokutan K (2009) Changes in behavior and gene expression induced by caloric restriction in C57BL/6 mice. Physiol Genomics 39:227–235

    Article  PubMed  CAS  Google Scholar 

  20. Nef HM, Möllmann H, Troidl C, Kostin S, Böttger T, Voss S, Hilpert P, Krause N, Weber M, Rolf A, Dill T, Schaper J, Hamm CW, Elsässer A (2008) Expression profiling of cardiac genes in Tako-Tsubo cardiomyopathy: insight into a new cardiac entity. J Mol Cell Cardiol 44:395–404

    Article  PubMed  CAS  Google Scholar 

  21. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  PubMed  Google Scholar 

  22. Ueyama T, Kawabe T, Hano T, Tsuruo Y, Ueda K, Ichinose M, Kimura H, Yoshida K (2009) Up-regulation of hemeoxygenase 1 in an animal model of takotsubo cardiomyopathy. Circ J 73:1141–1146

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Sinha S, McDonald OG, Shang Y, Hoofnagle MH, Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727

    Article  PubMed  CAS  Google Scholar 

  24. Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282:13769–13779

    Article  PubMed  CAS  Google Scholar 

  25. Nobori K, Ito H, Tamomori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M (2002) ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 34:1387–1397

    Article  PubMed  CAS  Google Scholar 

  26. Wier WG, Morgan KG (2003) Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 150:91–139

    Article  PubMed  CAS  Google Scholar 

  27. Saucerman JJ, McCulloch AD (2006) Cardiac beta-adrenergic signaling: from subcellular microdomains to heart failure. Ann N Y Acad Sci 1080:348–361

    Article  PubMed  CAS  Google Scholar 

  28. Singh K, Communal C, Sawyer DB, Colucci WS (2000) Adrenergic regulation of myocardial apoptosis. Cardiovasc Res 45:713–719

    Article  PubMed  CAS  Google Scholar 

  29. Goldspink DF, Burniston JG, Ellison GM, Clark WA, Tan LB (2004) Catecholamine-induced apoptosis and necrosis in cardiac and skeletal myocytes of the rat in vivo: the same or separate death pathways? Exp Physiol 89:407–416

    Article  PubMed  CAS  Google Scholar 

  30. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497

    PubMed  CAS  Google Scholar 

  31. Paier A, Agewall S, Kublickiene K (2009) Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease. Heart Vessels 24:260–266

    Article  PubMed  Google Scholar 

  32. Shintani-Ishida K, Nakajima M, Uemura K, Yoshida K (2006) Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochem Biophys Res Commun 345:1600–1605

    Article  PubMed  CAS  Google Scholar 

  33. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Edith D. Hendley (Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington, VT, USA) for helpful comments and careful reading of the manuscript. This work was supported in part by Grants-in-Aid from the Japan Society for the Promotion of Science (20390193 and 21590771).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ueyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueyama, T., Yamamoto, Y., Ueda, K. et al. Cardiac and vascular gene profiles in an animal model of takotsubo cardiomyopathy. Heart Vessels 26, 321–337 (2011). https://doi.org/10.1007/s00380-010-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0070-8

Keywords

Navigation