Skip to main content
Log in

Short-term effect of levosimendan on free light chain kappa and lambda levels in patients with decompensated chronic heart failure

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

To investigate the effects of levosimendan, a positive inotropic agent, on the new heart failure markers immunoglobulin free light chains kappa and lambda (FLC-κ and FLC-λ) in decompensated chronic heart failure (HF), 59 patients with New York Heart Association (NYHA) class III–IV HF were enrolled. Patients were randomized into levosimendan (n = 31) and standard HF treatment (n = 29) groups. Serum FLC-κ and FLC-λ, brain natriuretic peptide (BNP), and ejection fraction (EF) were measured before treatment and on the 5th day of treatment initiation. Forty-two percent of subjects were females (n = 25) and overall mean age was 64.1 ± 10.7 years. FLC-κ (P < 0.05) and FLC-λ (P < 0.05) were significantly decreased in the levosimendan group compared to baseline, but no difference in either marker in the standard treatment group was observed. Pre- and post-treatment FLC-κ/FLC-λ ratios in both groups were similar, whereas FLC-κ and FLC-λ levels and the FLC-κ/FLC-λ ratio showed no significant correlation with NYHA class, brain natriuretic peptide (BNP) and ejection fraction (EF) levels; and BNP and EF changes after the treatment. Symptomatic improvement in the levosimendan group according to the NYHA class was significantly better than in the standard treatment group (P = 0.044). While 55.2% of patients in the levosimendan group showed a 1-degree shift to lower NYHA classes, 10.3% showed a 2-degree decrease. In conclusion, levosimendan caused short-term hemodynamic and symptomatic improvements, with a more pronounced decrease in FLC levels in patients with advanced decompensated HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, Dí Agostino RB (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107:1486–1491

    Article  PubMed  CAS  Google Scholar 

  2. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    Article  PubMed  CAS  Google Scholar 

  3. Plenz G, Song ZF, Tjan TD, Koenig C, Baba HA, Erren M, Flesch M, Wichter T, Scheld HH, Deng MC (2001) Activation of the cardiac interleukin-6 system in advanced heart failure. Eur J Heart Fail 3:415–421

    Article  PubMed  CAS  Google Scholar 

  4. Matsumori A. Biomarker for diagnosing heart disease and the use thereof. (Patent disclosure). www.freepatentonline.com

  5. Dispenzieri A, Kyle R, Merlini G, Miquel JS, Ludwig H, Hajek R, Palumbo A, Jagannath S, Blade S, Lonial S, Dimıpoulos M, Comenzo R, Einsele H, Barloqie B, Anderson K, Gertz M, Harousseau JL, Attal M, Tosi P, Sonneyeld P, Boccadoro M, Morgan G, Richardson P, Sezer O, Mateos MV, Cavo M, Joshua D, Turesson I, Chen W, Shimizu K, Powles R, Rajkumar SV, Durie G, International Myeloma Working Group (2009) International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders Leukemia 2:215–224

    Article  CAS  Google Scholar 

  6. Matsumori A (2006) AHA-APSC Joint Symposium: Etiology of Diastolic vs Systolic Heart Failure: East versus West. November 2006. www.apscardio.org

  7. Hara M, Ono K, Hwang M, Iwasaki A, Okada M, Nakatani K, Sasayama S, Matsumori A (2002) Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med 195:375–381

    Article  PubMed  CAS  Google Scholar 

  8. Müller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy Circulation 101:385–391

    PubMed  Google Scholar 

  9. Sato Y, Takatsu Y, Kataoka K, Yamada T, Taniguchi R, Sasayama S, Matsumori A. Serial circulating concentrations of C-reactive protein and cytokines in patients with acute left heart decompensation. Clin Cardiol 22:811–813

  10. Iwasaki A, Matsumori A, Yamada T, Shioi T, Wang W-Z, Ono K, Nishio R, Okada M, Sasayama S (1999) Pimobendan inhibits the production of proinflammatory cytokines and gene expression of inducible nitric oxide synthase in a murine model of viral myocarditis. J Am Coll Cardiol 33:1400–1407

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki H, Matsumori A, Matoba Y, Kyu B, Tanaka A, Fujita J, Sasayama S (1993) Enhanced expression of superoxide dismutase messenger RNA in viral myocarditis. An SH-dependent reduction of its expression and myocardial injury. J Clin Invest 91:2727–2733

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka A, Matsumor A, Wang W-Z, Sasayama S (1994) An angiotensin II receptor antagonist reduces myocardial damage in an animal model of myocarditis. Circulation 90:2051–2055

    PubMed  CAS  Google Scholar 

  13. Chanani NK, Cowan DB, Takeuchi K, Poutias DN, Garcia LM, del Nido PJ, McGowan FX Jr (2002) Differential effects of amrinone and milrinone upon myocardial inflammatory signaling. Circulation 106:I284–I289

    Article  PubMed  Google Scholar 

  14. Mebazaa A, Nieminen MS, Packer M, Cohen-Solal A, Kleber FX, Pocock SJ, Thakkar R, Padley RJ, Pöder P, Kivikko M, SURVIVE Investigator (2007) Levosimendan vs. dobutamine for patients with acute decompensated heart failure: SURVIVE Randomized Trial. JAMA 297:1883–1891

    Article  PubMed  CAS  Google Scholar 

  15. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, Harjola VP, Mitrovic V, Abdalla M, Sandell EP, Lehtonen L; Steering Committee and Investigators of the Levosimendan Infusion Versus Dobutamine (LIDO) Study (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised doubleblind trial. Lancet 360:196–202

    Article  PubMed  CAS  Google Scholar 

  16. Adamopoulos S, Parissis JT, Iliodromitis EK, Paraskevaidis I, Tsiapras D, Farmakis D, Karatzas D, Gheorghiade M, Filippatos GS, Kremastinos DT (2006) Effects of levosimendan versus dobutamine on inflammatory and apoptotic pathways in acutely decompensated chronic heart failure. Am J Cardiol 98:102–106

    Article  PubMed  CAS  Google Scholar 

  17. Parissis JT, Panou F, Farmakis D, Adamopoulos S, Filippatos G, Paraskevaidis I, Venetsanou K, Lekakis J, Kremastinos DT (2005) Effects of levosimendan on markers of left ventricular diastolic function and neurohormonal activation in patients with advanced heart failure. Am J Cardiol 96:423–426

    Article  PubMed  CAS  Google Scholar 

  18. Parissis JT, Andreadou I, Markantonis SL, Bistola V, Louka A, Pyriochou A, Paraskevaidis I, Filippatos G, Iliodromitis EK, Kremastinos DT (2007) Effects of levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis 195:210–215

    Article  CAS  Google Scholar 

  19. Abraham RS, Katzmann JA, Clark RJ, Bradwell AR, Kyle RA, Gertz MA (2003) Quantitative analysis of serum free light chains. A new marker for the diagnostic evaluation of primary systemic amyloidosis. Am J Clin Pathol 119:274–278

    Article  PubMed  CAS  Google Scholar 

  20. Bradwell AR, Carr-Smith HD, Mead GP, Drayson MT (2002) Serum free light chain immunoassays and their clinical application. Clin Appl Immunol Rev 3:17–33

    Article  CAS  Google Scholar 

  21. van der Heijden M, Kraneveld A, Redegeld F (2006) Free immunoglobulin light chains as target in the treatment of chronic inflammatory diseases. Eur J Pharmacol 533:319–326

    Article  PubMed  CAS  Google Scholar 

  22. Lievens MM (1989) Medical and technical usefulness of measurement of kappa and lambda immunoglobulin light chains in serum with an M-component. J Clin Chem Clin Biochem 27:519–523

    PubMed  CAS  Google Scholar 

  23. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  24. Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24:22–26

    Article  PubMed  Google Scholar 

  25. Matsumori A, Ono K, Nishio R, Igata H, Shioi T, Matsui S, Furukawa Y, Iwasaki A, Nose Y, Sasayama S (1997) Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Circulation 96:1501–1506

    PubMed  CAS  Google Scholar 

  26. Haikala H, Linden IB (1995) Mechanisms of action of calcium sensitizing drugs. J Cardiovasc Pharmacol 26:10–19

    Google Scholar 

  27. Yokoshiki H, Sperelakis N (2003) Vasodilating mechanisms of levosimendan. Cardiovasc Drugs Ther; 17:111–113

    Article  PubMed  CAS  Google Scholar 

  28. Paraskevaidis IA, Parissis JT, Kremastinos D (2005) Antiinflammatory and anti-apoptotic effects of levosimendan in decompensated heart failure: a novel mechanism of drug-induced improvement in contractile performance of the failing heart. Curr Med Chem Cardiovasc Hematol Agents 3:243–247

    Article  PubMed  CAS  Google Scholar 

  29. Yilmaz MB, Yontar C, Erdem A, Karadas F, Yalta K, Turgut OO, Yilmaz A, Tandogan I (2009) Comparative effects of levosimendan and dobutamine on right ventricular function in patients with biventricular heart failure. Heart Vessels 24:16–21

    Article  PubMed  Google Scholar 

  30. Maisch B, Deeg P, Liebau G, Kochsiek K (1983) Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. Am J Cardiol 52:1072–1078

    Article  PubMed  CAS  Google Scholar 

  31. Schultheiss HP, Bolte HD (1985) Immunological analysis of autoantibodies against the adenine nucleotide translocator in dilated cardiomyopathy. J Mol Cell Cardiol 17:603–617

    Article  PubMed  CAS  Google Scholar 

  32. Yamakawa K, Fukuta S, Yoshinaga T, Umemoto S, Itagaki T, Kusukawa R (1987) Study of immunological mechanism in dilated cardiomyopathy. Jpn Circ J 51:665–675

    PubMed  CAS  Google Scholar 

  33. Caforio AL, Stewart JT, Bonifacio E, Burke M, Davies MJ, McKenna WJ, Bottazzo GF (1990) Inappropriate major histocompatibility complex expression on cardiac tissue in dilated cardiomyopathy. Relevance for autoimmunity? J Autoimmun 3:187–200

    Article  PubMed  CAS  Google Scholar 

  34. Avgeropoulou C, Andreadou I, Markantonis-Kyroudis S, Demopoulou M, Missovoulos P, Androulakis A, Kallikazaros I (2005) The Ca2+-sensitizer levosimendan improves oxidative damage, BNP and pro-inflammatory cytokine levels in patients with advanced decompensated heart failure in comparison to dobutamine. Eur J Heart Fail 7:882–887

    Article  PubMed  CAS  Google Scholar 

  35. De Luca L, Colucci WS, Nieminen MS, Massie BM, Gheorghiade M (2006) Evidence-based use of levosimendan in different clinical settings. Eur Heart J 27:1908–1920

    Article  PubMed  CAS  Google Scholar 

  36. Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK (2006) Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 290:1453–1462

    Article  CAS  Google Scholar 

  37. Kankaanranta H, Zhang X, Tumelius R, Ruotsalainen M, Haikala H, Nissinen E, Moilanen E (2007) Antieosinophilic activity of simendans. J Pharmacol Exp Ther 323:31–38

    Article  PubMed  CAS  Google Scholar 

  38. Fonarow GC, Peacock WF, Horwich TB; ADHERE Scientific Advisory Committee Investigators (2008) Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict inhospital mortality from ADHERE. Am J Cardiol 101:231–237

    Article  PubMed  CAS  Google Scholar 

  39. Farmakis D, Parissis JT, Bistola V, Paraskevaidis IA, Iliodromitis EK, Filippatos G, Kremastinos DT (2008) Plasma B-type natriuretic peptide reduction predicts long-term response to levosimendan therapy in acutely decompensated chronic heart failure. Int J Cardiol 139:75–79

    Article  PubMed  Google Scholar 

  40. Moertl D, Berger R, Huelsmann M, Bojic A, Pacher R (2005) Short-term effects of levosimendan and prostaglandin E1 on hemodynamic parameters and B-type natriuretic peptide levels in patients with decompensated chronic heart failure. Eur J Heart Fail 7:1156–1163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Halil Kurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, İ.H., Yavuzer, K. & Batur, M.K. Short-term effect of levosimendan on free light chain kappa and lambda levels in patients with decompensated chronic heart failure. Heart Vessels 25, 392–399 (2010). https://doi.org/10.1007/s00380-009-1216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-009-1216-4

Key words

Navigation