Skip to main content
Log in

Ubiquitous atherosclerosis in coronary arteries without angiographically significant stenosis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Previous intravascular ultrasound (IVUS) studies have shown coronary artery atherosclerosis even in angiographically normal reference segment. However, IVUS has not been performed in all of the three major coronary arteries. A total of 50 patients with single-vessel disease underwent IVUS evaluation in the proximal two-thirds of the three major coronary arteries. Lumen and external elastic membrane cross-sectional areas were measured at 1-mm intervals. To compensate the difference in pullback length among coronary arteries, normalized total plaque and media volume (TPV) was calculated as TPV/number of slices in pullback × median number of slices in study population. Percent plaque and media volume (PPV) was calculated as TPV/Σ external elastic membrane cross-sectional area × 100. A cross section was defined as atherosclerotic if maximum intimal thickness exceeded 0.5 mm at any point in the vessel circumference. There was no significant difference in normalized TPV, PPV, and the incidence of abnormal intimal thickness between coronary arteries with and without significant stenosis. Frequency distribution of plaque burden was similar. Atherosclerosis is ubiquitous even in coronary arteries without angiographically significant stenosis. The extent of atherosclerosis is similar between coronary arteries with and without significant stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB (1995) Atherosclerosis in angiographically “Normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 25:1479–1485

    Article  CAS  PubMed  Google Scholar 

  2. Nicholls SJ, Tuzcu EM, Crowe T, Sipahi I, Schoenhagen P, Kapadia S, Hazen SL, Wun C, Norton M, Ntanios F, Nissen SE (2006) Relationship between cardiovascular risk factors and atherosclerotic disease burden measured by intravascular ultrasound. J Am Coll Cardiol 47:1967–1975

    Article  PubMed  Google Scholar 

  3. Mintz GS, Nissen SE, Anderson WD, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). J Am Coll Cardiol 37:1478–1492

    Article  CAS  PubMed  Google Scholar 

  4. Jensen LO, Thayssen P, Mintz GS, Egede R, Maeng M, Junker A, Galloee A, Christiansen EH, Pedersen KE, Hansen HS, Hansen KN (2008) Comparison of intravascular ultrasound and angiographic assessment of coronary reference segment size in patients with type 2 diabetes mellitus. Am J Cardiol 101:590–595

    Article  PubMed  Google Scholar 

  5. Tuzcu EM, Kapadia SR, Tutar E, Ziada KM, Hobbs RE, McCarthy PM, Young JB, Nissen SE (2001) High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults. Circulation 103:2705–2710

    CAS  PubMed  Google Scholar 

  6. McGill HC Jr, McMahan CA (1998) Determinants of atherosclerosis in the young. Am J Cardiol 82:30T–36T

    Article  PubMed  Google Scholar 

  7. Velican D, Velican C (1980) Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis 36:449–460

    Article  CAS  PubMed  Google Scholar 

  8. Glagov S, Weisenverg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  9. Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold HK (2004) Pathologic assessment of the vulnerable human coronary plaque. Heart 90:1385–1391

    Article  CAS  PubMed  Google Scholar 

  10. Kaple RK, Maehara A, Sano K, Missel E, Castellanos C, Tsujita K, Fahy M, Moses JW, Stone GW, Leon MB, Mintz GS (2008) The axial distribution of lesion-site atherosclerotic plaque components: an in vivo volumetric intravascular ultrasound radio-frequency analysis of lumen stenosis, necrotic core and vessel remodeling. Ultrasound Med Biol 35:550–557

    Article  PubMed  Google Scholar 

  11. Hong MK, Mintz GS, Lee CW, Lee JW, Park JH, Park DW, Lee SW, Kim YH, Cheong SS, Kim JJ, Park SW, Park SJ (2008) A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris. Am J Cardiol 101:568–572

    Article  PubMed  Google Scholar 

  12. Rodriguez-Granillo GA, García-García HM, Mc Fadden EP, Valgimigli M, Aoki J, de Feyter P, Serruys PW (2005) In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 46:2038–2042

    Article  PubMed  Google Scholar 

  13. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    CAS  PubMed  Google Scholar 

  14. Rioufol G, Finet G, Ginon I, André-Fouët X, Rossi R, Vialle E, Desjoyaux E, Convert G, Huret JF, Tabib A (2002) Multiple atherosclerotic plaque rupture in acute coronary syndrome. Circulation 106:804–808

    Article  CAS  PubMed  Google Scholar 

  15. Oka H, Ikeda S, Koga S, Miyahara Y, Kohno S (2008) Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases. Heart Vessels 23:249–256

    Article  PubMed  Google Scholar 

  16. Mehran R, Dangas GD, Kobayashi Y, Lansky AJ, Mintz GS, Aymong ED, Fahy M, Moses JW, Stone GW, Leon MB (2004) Short- and long-term results after multivessel stenting in diabetic patients. J Am Coll Cardiol 43:1348–1354

    Article  PubMed  Google Scholar 

  17. Hayashino Y, Shimbo T, Tsujii S, Ishii H, Kondo H, Nakamura T, Nagata-Kobayashi S, Fukui T (2007) Cost-effectiveness of coronary artery disease screening in asymptomatic patients with type 2 diabetes and other atherogenic risk factors in Japan: factors influencing on international application of evidence-based guidelines. Int J Cardiol 118:88–96

    Article  PubMed  Google Scholar 

  18. Shimada K, Kasanuki H, Hagiwara N, Ogawa H, Yamaguchi N (2008) Routine coronary angiographic follow-up and subsequent revascularization in patients with acute myocardial infarction. Heart Vessels 23:383–389

    Article  PubMed  Google Scholar 

  19. Nakamura H, Arakawa K, Itakura H, Kitabatake A, Goto Y, Toyota T, Nakaya N, Nishimoto S, Muranaka M, Yamamoto A, Mizuno K, Ohashi Y; MEGA Study Group (2006) Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study). Lancet 368:1155–1163

    Article  CAS  PubMed  Google Scholar 

  20. al-Khalili F, Svane B, Di Mario C, Prati F, Mallus MT, Rydén L, Schenck-Gustafsson K (2000) Intracoronary ultrasound measurements in women with myocardial infarction without significant coronary lesions. Coron Artery Dis 11:579–584

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishio, N., Kobayashi, Y., Iwata, Y. et al. Ubiquitous atherosclerosis in coronary arteries without angiographically significant stenosis. Heart Vessels 25, 35–40 (2010). https://doi.org/10.1007/s00380-009-1161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-009-1161-2

Key words

Navigation