Skip to main content

Improvement in the quality of the cardiac vein images by optimizing the scan protocol of multidetector-row computed tomography


The present study aimed at optimizing the scan protocol for multidetector-row computed tomography (MDCT) to adequately visualize coronary veins. Circulation time (Cir.T) was defined as the time period from the injection of contrast media into the coronary artery to the pervasion of the contrast media into the coronary sinus as observed by coronary angiography. We investigated the relation between the Cir.T and echocardiographic parameters in 64 patients. The left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) were correlated with the Cir.T (r = 0.58, P < 0.0001, and r = 0.60, P < 0.0001 respectively). In addition, the left ventricular ejection fraction (LVEF) was negatively correlated with the Cir.T (r = 0.48, P < 0.0001). The average Cir. T was longer in patients with LVEF < 35% (8.0 s vs 6.7 s; P < 0.05) or LVDd > 55 mm (7.9 s vs 6.2 s; P < 0.05) than in the other patients. The quality of the MDCT images of the coronary veins obtained at different scan timings (coronary artery phase and 10 s or 15 s after the coronary artery phase) were graded and classified into four categories (0 = worst, 3 = best) in 25 patients with LVEF < 35%. The delays of 10 and 15 s after the coronary artery phase significantly improved the mean image quality (P < 0.05). The Cir.T was prolonged in patients with low LVEF and LV dilation. An appropriate delay improved the quality of the MDCT images of the coronary veins in patients with LV dysfunction.

This is a preview of subscription content, access via your institution.


  1. Singh JP, Houser S, Heist EK, Ruskin JN (2005) The coronary venous anatomy: a segmental approach to aid cardiac resynchronization therapy. J Am Coll Cardiol 46:68–74

    Article  PubMed  Google Scholar 

  2. Wen MS, Yeh SJ, Wang CC, King A, Lin FC, Wu D (1996) Radiofrequency ablation therapy of the posteroseptal accessory pathway. Am Heart J 132:612–620

    Article  CAS  PubMed  Google Scholar 

  3. Jais P, Hocini M, Hsu LF, Sanders P, Scavee C, Weerasooriva R, Macle L, Raybaud F, Garrigue S, Shah DC, Le Metayer P, Clémenty J, Haïssaguerre M (2004) Technique and results of linear ablation at the mitral isthmus. Circulation 110:2996–3002

    Article  PubMed  Google Scholar 

  4. Laham RJ, Rezaee M, Post M, Xu X, Sellke FW (2003) Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration. Catheter Cardiovasc Interv 58: 375–378

    Article  PubMed  Google Scholar 

  5. Webb JG, Harnek J, Munt BI, Kimblad PO, Chandavimol M, Thompson CR, Mayo JR, Solem JO (2006) Percutaneous transvenous mitral annuloplasty: initial human experience with device implantation in the coronary sinus. Circulation 113:851–855

    Article  PubMed  Google Scholar 

  6. Cleland JG. Daubert JC. Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L, Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549

    Article  CAS  PubMed  Google Scholar 

  7. Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108:2596–2603

    Article  PubMed  Google Scholar 

  8. Nieman K, Cademartiri F, Lemos PA, Raaijimakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  9. Komatsu S, Sato Y, Ichikawa M, Kunimasa T, Ito S, Takagi T, Lee T, Matsumoto N, Takayama T, Ichikawa M, Hirayama A, Mishima M, Saito S, Kodama K (2008) Anomalous coronary arteries in adults detected by multislice computed tomography: presentation of cases from multicenter registry and review of the literature. Heart Vessels 23:26–34

    Article  PubMed  Google Scholar 

  10. Ichikawa T, Endo J, Koizumi J, Ro A, Kobayashi M, Saito M, Kawada S, Hashimoto T, Iwai Y (2008) Visualization of the azygos arch valves on multidetector-row computed tomography. Heart Vessels 23:118–23

    Article  PubMed  Google Scholar 

  11. Jongbloed MR, Lamb HJ, Bax JJ, Schnijf JD, de Rooos A, van der Wall EE, Schalij MJ (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753

    Article  PubMed  Google Scholar 

  12. Mao S, Shinbane JS, Girsky MJ, Child J, Carson S, Oudiz RJ, Budoff MJ (2005) Coronary venous imaging with electron beam computed tomographic angiography: three-dimensional mapping and relationship with coronary arteries. Am Heart J 150:315–322

    Article  PubMed  Google Scholar 

  13. Abbara S, Cury RC, Nieman K, Reddy V, Moselewski F, Schmidt S, Ferencik M, Hoffman U, Brady TJ, Achenbach S (2005) Noninvasive evaluation of cardiac veins with 16-MDCT angiography. AJR 185:1001–1006

    Article  PubMed  Google Scholar 

  14. Muhlenbruch G, koos R, Wildberger J, Gunther R, Mahnken A (2005) Imaging of the cardiac venous system: comparison of MDCT and conventional angiography. AJR 185:1252–1257

    Article  PubMed  Google Scholar 

  15. Tada H, Kurosaki K, Naito S, Koyama K, Itoi K, Ito S, Ueda M, Shinbo G, Hoshizaki H, Nogami A, Oshima S, Taniguchi K (2005) Three-dimensional visualization of the coronary venous system using multidetector row computed tomography. Circ J 69:165–170

    Article  PubMed  Google Scholar 

  16. Schiller NB, Shah PM, Crawford M, Demaria A (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Society Standards, Subcommittee on Quantification of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367

    CAS  PubMed  Google Scholar 

  17. Hara T, Yamashiro K, Okajima K, Mizutani T, Hayashi T, Ikeda Y, Yamada S, Oka K, Tsukishiro Y, Takami K, Akagami T, Kumagai H, Kuroki N, Inoue M, Murai N, Kajiya T (2005) Multidetector spiral computed tomography can detect variations of coronary veins. Heart Rhythm, 2:S182–S182

    Article  Google Scholar 

  18. D’Cruz IA, Johns C, Shala MB (1999). Dynamic cyclic changes in coronary sinus caliber in patients with and without congestive heart failure. Am J Cardiol 83:275–277

    Article  PubMed  Google Scholar 

  19. Potkin BN, Roberts WC (1987) Size of coronary sinus at necropsy in subjects without cardiac disease and in patients with various cardiac conditions. Am J Cardiol 60:1418–1421

    Article  CAS  PubMed  Google Scholar 

  20. Faxon DP, Jacobs AK, Kellett MA, McSweeney SM, Coats WD, Ryan TJ (1985) Coronary sinus occlusion pressure and its relation to intracardiac pressure. Am J Cardiol 56:457–460

    Article  CAS  PubMed  Google Scholar 

  21. Ozawa M, Koyama Y, Ito H, Iwakura K, Kawano S, Okamura A (2007) The scan delay time for coronary CT angiography in the patients with poor left ventricular ejection fraction. Circ J 71suppl I:404

    Google Scholar 

  22. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kohei Yamashiro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hara, T., Yamashiro, K., Okajima, K. et al. Improvement in the quality of the cardiac vein images by optimizing the scan protocol of multidetector-row computed tomography. Heart Vessels 24, 434 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Key words

  • Multidetector-row computed tomography
  • Coronary veins
  • Cardiac resynchronization therapy
  • Scan protocol