Skip to main content
Log in

Effects of dietary sodium on reactive oxygen species formation and endothelial dysfunction in low-density lipoprotein receptor-deficient mice on high-fat diet

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Hypertension and high serum cholesterol level are important risk factors for atherosclerosis and coronary heart disease. In the present study we tested the hypothesis whether high sodium intake, when given in combination with Western type high-fat diet, induces endothelial dysfunction and promotes atherosclerosis. Furthermore, the role and enzyme sources of increased oxidative stress were examined. Low-density lipoprotein receptor-deficient mice (LDLR−/−) and control C57Bl/6 mice received either high-fat, normal-sodium diet (fat 18% and cholesterol 0.5%; NaCl 0.7%; w/w) or high-fat, high-sodium diet (7% NaCl w/w) for 12 weeks. Superoxide formation was assessed by lucigenin enhanced chemiluminescence, endothelial functions were examined ex vivo, and atherosclerotic lesions from the aorta were assessed by light microscopy. High-fat, high-sodium diet increased systolic blood pressure in LDLR−/− mice but not in C57Bl/6 mice, whereas it induced cardiac hypertrophy in both mouse strains. Dietary combination of fat and sodium induced endothelial dysfunction in LDLR−/− mice. Preincubation with a superoxide scavenger Tiron normalized endothelial dysfunction, whereas the hydrogen peroxide scavenger catalase did not alter endothelial function. High sodium intake induced superoxide formation in LDLR−/− mice on high-fat diet. Stimulation of muscarinic receptors in the endothelial cells by acetylcholine increased superoxide generation, whereas preincubation with the nitric oxide synthase (NOS) inhibitor L-arginine methyl ester or endothelium removal reduced superoxide production. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by apocynin decreased vascular superoxide formation whereas the xanthine oxidase inhibitor oxypurinol did not significantly affect oxidative stress in LDLR−/− mice. In conclusion, the detrimental effects of dietary sodium on endothelial function and progression of atherosclerosis in LDLR−/− mice on high-fat diet are mediated by increased ROS formation mainly through uncoupled NOS and NADPH oxidase. The present study also underscores the importance of superoxide and endothelial NOS uncoupling in the pathogenesis of endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases. Circ Res 87:840–844

    PubMed  CAS  Google Scholar 

  2. Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030

    PubMed  CAS  Google Scholar 

  3. Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96(8):818–822

    Article  PubMed  CAS  Google Scholar 

  4. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA Tarpey M, Fukai T, Harrison DGl (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103(9):1282–1288

    PubMed  CAS  Google Scholar 

  5. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace Circulation 113(13): 1708–1714

    Article  PubMed  Google Scholar 

  6. Galle J. Hansen-Hagge T. Wanner C. Seibold S (2006) Impact of oxidized low-density lipoprotein on vascular cells. Atherosclerosis 185:219–226

    Article  PubMed  CAS  Google Scholar 

  7. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85(2):679–715

    Article  PubMed  CAS  Google Scholar 

  8. Simon G (2003) Experimental evidence for blood pressure-independent vascular effects of high sodium diet. Am J Hypertens 16(12):1074–1078

    Article  PubMed  CAS  Google Scholar 

  9. Lenda DM, Sauls BA, Boegehold MA (2000) Reactive oxygen species may contribute to reduced endothelium-dependent dilation in rats fed high salt. Am J Physiol Heart Circ Physiol 279(1): H7–H14

    PubMed  CAS  Google Scholar 

  10. Lenda DM, Boegehold MA (2002) Effect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation. Am J Physiol Heart Circ Physiol 282(2):H395–H402

    PubMed  CAS  Google Scholar 

  11. Zhu J, Mori T, Huang T, Lombard JH (2004) Effect of high-salt diet on NO release and superoxide production in rat aorta. Am J Physiol Heart Circ Physiol 286(2):H575–H583

    Article  PubMed  CAS  Google Scholar 

  12. Zhou MS, Adam AG, Jaimes EA, Raij L (2003) In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 42(5):945–951

    Article  PubMed  CAS  Google Scholar 

  13. Ketonen J, Merasto S, Paakkari I, Mervaala EM (2005) High sodium intake increases vascular superoxide formation and promotes atherosclerosis in apolipoprotein E-deficient mice. Blood Press 14(6):373–382

    Article  PubMed  CAS  Google Scholar 

  14. Wambi-Kiesse CO., Katusic Z (1999) Inhibition of copper/zinc superoxide dismutase impairs NO-mediated endothelium-dependent relaxations. Am J Physiol Heart Circ Physiol 276(45): H1043–H1048

    CAS  Google Scholar 

  15. Rabelo LA, Cortes SF, Alvarez-Leite JI, Lemos VS (2003) Endothelium dysfunction in LDL receptor knockout mice: a role for H2O2. Br J Pharmacol 138(7):1215–2019

    Article  PubMed  CAS  Google Scholar 

  16. Meyer JW, Holland JA, Ziegler LM, Chang MM, Beebe G, Schmitt ME (1999) Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells: a potential atherogenic source of reactive oxygen species. Endothelium 7(1):11–22

    PubMed  CAS  Google Scholar 

  17. Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P, Cybulsky MI (1999) Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol 19(8):1938–1944

    PubMed  CAS  Google Scholar 

  18. Tangirala RK, Rubin EM, Palinski W (1995) Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36(11):2320–2328

    PubMed  CAS  Google Scholar 

  19. Krieger MH, Santos KF, Shishido SM, Wanschel AC, Estrela HF, Santos L. De Oliveira MG, Franchini KG, Spadari-Bratfisch RC, Laurindo FR (2006) Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice. Nitric Oxide 14(1):12–20

    Article  PubMed  CAS  Google Scholar 

  20. Steioff K, Rutten H, Busch AE, Plettenburg O, Ivashchenko Y, Lohn M (2005) Long term Rho-kinase inhibition ameliorates endothelial dysfunction in LDL-receptor deficient mice. Eur J Pharmacol 512(2–3):247–249

    Article  PubMed  CAS  Google Scholar 

  21. Ou J, Wang J, Xu H, Ou Z, Sorci-Thomas MG, Jones DW, Signorino P, Densmore JC, Kaul S, Oldham KT, Pritchard KA Jr (2005) Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet. Circ Res 97(11):1190–1197

    Article  PubMed  CAS  Google Scholar 

  22. Ma XL, Gao F, Nelson AH, Lopez BL, Christopher TA, Yue TL Barone FC (2001) Oxidative inactivation of nitric oxide and endothelial dysfunction in stroke-prone spontaneous hypertensive rats. J Pharmacol Exp Ther 298(3):879–885

    PubMed  CAS  Google Scholar 

  23. Dobrian AD, Schriver SD, Lynch T, Prewitt RL (2003) Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity Am J Physiol Renal Physiol 285(4):F619–F628

    PubMed  CAS  Google Scholar 

  24. Hayakawa H, Raij L (1999) Relationship between hypercholesterolemia, endothelial dysfunction and hypertension. J Hypertens 17:611–619

    Article  PubMed  CAS  Google Scholar 

  25. Noronha BT, Li JM, Wheatcroft SB, Shah AM, Kearney MT (2005) Inducible nitric oxide synthase has divergent effects on vascular and metabolic function in obesity. Diabetes 54(4):1082–1089

    Article  PubMed  CAS  Google Scholar 

  26. Mervaala EMA, Himberg J-J, Laakso J, Tuomainen P, Karppanen H (1992) Beneficial effects of a potassium-and magnesium-enriched salt alternative. Hypertension 19:535–540

    PubMed  CAS  Google Scholar 

  27. Wolin MS (2000) Interactions of oxidants with vascular signaling systems. Arterioscler Thromb Vasc Biol 20:1430–1442

    PubMed  CAS  Google Scholar 

  28. Wolin MS, Gupte SA, Oeckler RA (2002) Superoxide in the vascular system. J Vasc Res 39(3):191–207

    Article  PubMed  CAS  Google Scholar 

  29. Shimokawa H, Morikawa K (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Mol Cell Cardiol 39(5):725–732

    Article  PubMed  CAS  Google Scholar 

  30. Ardanaz N, Pagano PJ (2006) Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med (Maywood) 231(3):237–251

    CAS  Google Scholar 

  31. Dikalov S, Griendling KK, Harrison DG (2007) Measurement of reactive oxygen species in cardiovascular studies. Hypertension 49(4):717–727

    Article  PubMed  CAS  Google Scholar 

  32. Chiesa R, Melissano G, Castellano R, Astore D, Marone EM, Grossi A, Maggi E, Finardi G, Casasco A, Bellomo G (1998) In search of biological markers of high-risk carotid artery atherosclerotic plaque: enhanced LDL oxidation. Ann Vasc Surg 12(1):1–9

    Article  PubMed  CAS  Google Scholar 

  33. Takagi A, Tsurumi Y, Ishizuka N, Omori H, Arai K, Hagiwara N, Kasanuki H (2006) Single administration of cerivastatin, an HMG-CoA reductase inhibitor, improves the coronary flow velocity reserve: a transthoracic Doppler echocardiography study. Heart Vessels 21(5):298–301

    Article  PubMed  Google Scholar 

  34. Duman D, Sahin S, Esertas K, Demirtunc R (2007) Simvastatin improves endothelial function in patents with subclinical hypothyroidism. Heart Vessels 22(2):88–93

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Mervaala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketonen, J., Mervaala, E. Effects of dietary sodium on reactive oxygen species formation and endothelial dysfunction in low-density lipoprotein receptor-deficient mice on high-fat diet. Heart Vessels 23, 420–429 (2008). https://doi.org/10.1007/s00380-008-1066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1066-5

Key words

Navigation