Abstract
The study of shortwave (SW) radiation and its interactions with our planet has proven critical for advancing the understanding of the Earth–atmosphere system. Here, the author shares an accessible and high-level perspective on recent progress, surprises encountered, and promising future research directionsa. A brief context for the study of SW radiation is provided, after which three specific aspects are focused upon that the author considers particularly important. First, the significance of three-dimensional (3D) SW radiative effects is highlighted via impacts on surface downward SW radiation in complex cloud fields. Crucially, it is shown that probability distributions of surface radiation can only be reliably simulated when accounting for 3D effects, which has implications for various applications and next-generation atmospheric modeling. Second, the significance of the often overlooked diurnal cycle in global top-of-atmosphere upward SW radiation is underscored by quantifying the controlling properties and processes. Opportunities for improved future satellite observations of the global diurnal cycle are noted. Third, the wealth of information provided by the spectral dimension of SW radiation is demonstrated through the extraction and attribution of SW spectral signatures. It is argued that further exploration of the spectral dimension, aided by the recently launched and upcoming suite of spectrally resolved SW satellite observations, promises a new era of SW radiation research.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65(11), 1170–1185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.
Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21(13), 3344–3358, https://doi.org/10.1175/2007JCLI2266.1.
Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res.: Atmos., 107(D20), LBA 12–1–LBA 12–8, https://doi.org/10.1029/2001JD000427.
Campillo, C., R. Fortes, and M. del Henar Prieto, 2012: Solar radiation effect on crop production. Solar Radiation, E. B. Babatunde, Ed., InTech, 167–194, https://doi.org/10.5772/34796.
Chen, H., and Coauthors, 2023: The Education and Research 3D Radiative Transfer Toolbox (EaR3T)–towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals. Atmospheric Measurement Techniques, 16(7), 1971–2000, https://doi.org/10.5194/amt-16-1971-2023.
Clark, R. N., and Coauthors, 2024: Imaging Spectroscopy: Earth and Planetary Remote Sensing with the PSI Tetracorder and Expert Systems from Rovers to EMIT and Beyond. The Planetary Science Journal, 5(12), 276, https://doi.org/10.3847/PSJ/AD6C3A.
Clough, S. A., and Coauthors, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Coddington, O., P. Pilewskie, and T. Vukicevic, 2012: The Shannon information content of hyperspectral shortwave cloud albedo measurements: Quantification and practical applications. J. Geophys. Res.: Atmos., 117(D4), D04205, https://doi.org/10.1029/2011JD016771.
Dai, A. G., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17(5), 930–951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.
Datseris, G., and B. Stevens, 2021: Earth’s albedo and its symmetry. AGU Advances, 2(3), e2021AV000440, https://doi.org/10.1029/2021AV000440.
Diamond, M. S., J. J. Gristey, and G. Feingold, 2024: Testing cloud adjustment hypotheses for the maintenance of Earth’s hemispheric albedo symmetry with natural experiments. Geophys. Res. Lett., 51(20), e2024GL111733, https://doi.org/10.1029/2024GL111733.
Diamond, M. S., J. J. Gristey, J. E. Kay, and G. Feingold, 2022: Anthropogenic aerosol and cryosphere changes drive Earth’s strong but transient clear-sky hemispheric albedo asymmetry. Communications Earth & Environment, 3(1), 206, https://doi.org/10.1038/s43247-022-00546-y.
Ding, J. C., and P. Yang, 2023: Lorenz-Mie theory-type solution for light scattering by spheroids with small-to-large size parameters and aspect ratios. Optics Express, 31(24), 40 937–40 951, https://doi.org/10.1364/OE.505416.
Doelling, D., C. Haney, R. Bhatt, B. Scarino, and A. Gopalan, 2018: Geostationary visible imager calibration for the CERES SYN1deg edition 4 product. Remote Sensing, 10(2), 288, https://doi.org/10.3390/rs10020288.
Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30(6), 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1.
Ghiasvand, R., T. E. Robsahm, A. C. Green, C. S. Rueegg, E. Weiderpass, E. Lund, and M. B. Veierød, 2019: Association of phenotypic characteristics and UV radiation exposure with risk of melanoma on different body sites. JAMA Dermatology, 155(1), 39–49, https://doi.org/10.1001/jamadermatol.2018.3964.
Goody, R., and R. Haskins, 1998: Calibration of radiances from space. J. Climate, 11(4), 754–758, https://doi.org/10.1175/1520-0442(1998)011<0754:CORFS>2.0.CO;2.
Gristey, J. J., and J. C. Chiu, 2024: Understanding our climate system through the lens of spectral reflected solar radiation. AIP Conference Proceedings, 2988, 070004, https://doi.org/10.1063/5.0183587.
Gristey, J. J., G. Feingold, K. S. Schmidt, and H. Chen, 2022: Influence of aerosol embedded in shallow cumulus cloud fields on the surface solar irradiance. J. Geophys. Res.: Atmos., 127(11), e2022JD036822, https://doi.org/10.1029/2022JD036822.
Gristey, J. J., J. C. Chiu, R. J. Gurney, S. C. Han, and C. J. Morcrette, 2017: Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. J. Geophys. Res.: Atmos., 122(2), 1114–1131, https://doi.org/10.1002/2016JD025514.
Gristey, J. J., G. Feingold, I. B. Glenn, K. S. Schmidt, and H. Chen, 2020a: On the relationship between shallow cumulus cloud field properties and surface solar irradiance. Geophys. Res. Lett., 47(22), e2020GL090152, https://doi.org/10.1029/2020GL090152.
Gristey, J. J., G. Feingold, I. B. Glenn, K. S. Schmidt, and H. Chen, 2020b: Surface solar irradiance in continental shallow cumulus fields: Observations and large-eddy simulation. J. Atmos. Sci., 77(3), 1065–1080, https://doi.org/10.1175/JAS-D-19-0261.1.
Gristey, J. J., J. C. Chiu, R. J. Gurney, C. J. Morcrette, P. G. Hill, J. E. Russell, and H. E. Brindley, 2018: Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model. Atmospheric Chemistry and Physics, 18(7), 5129–5145, https://doi.org/10.5194/acp-18-5129-2018.
Gristey, J. J., J. C. Chiu, R. J. Gurney, K. P. Shine, S. Havemann, J. C. Thelen, and P. G. Hill, 2019: Shortwave spectral radiative signatures and their physical controls. J. Climate, 32(15), 4805–4828, https://doi.org/10.1175/JCLI-D-18-0815.1.
Gristey, J. J., and Coauthors, 2023: Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations. Atmospheric Measurement Techniques, 16(15), 3609–3630, https://doi.org/10.5194/amt-16-3609-2023.
Hakuba, M. Z., B. C. Kindel, J. J. Gristey, Bodas-A. Salcedo, G. L. Stephens, and P. Pilewskie, 2022: Simulated variability in visible and near-IR irradiances in preparation for the upcoming Libera mission. Paper presented at the International Radiation Symposium, Thessaloniki, https://www.irs2022.org/.
Harber, D., and Coauthors, 2019: Compact total irradiance monitor flight demonstration. Proc. SPIE 11131, CubeSats and Small-Sats for Remote Sensing III, San Diego, California, United States, SPIE, 97–104, https://doi.org/10.1117/12.2531308.
He, Z. L., Q. Libois, N. Villefranque, H. Deneke, J. Witthuhn, and F. Couvreux, 2024: Combining observations and simulations to investigate the small-scale variability of surface solar irradiance under continental cumulus clouds. Atmospheric Chemistry and Physics, 24(19), 11 391–11 408, https://doi.org/10.5194/acp-24-11391-2024.
Hocking, T., T. Mauritsen, and L. Megner, 2024: Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers. Atmospheric Measurement Techniques, 17(24), 7077–7095, https://doi.org/10.5194/amt-17-7077-2024.
Hogan, R. J., and J. K. P. Shonk, 2013: Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes. J. Atmos. Sci., 70(2), 708–724, https://doi.org/10.1175/JAS-D-12-041.1.
Hogan, R. J., S. A. K. Schäfer, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res.: Atmos., 121(14), 8583–8599, https://doi.org/10.1002/2016JD024876.
Itterly, K. F., and P. C. Taylor, 2014: Evaluation of the tropical TOA flux diurnal cycle in MERRA and ERA-interim retrospective analyses. J. Climate, 27(13), 4781–4796, https://doi.org/10.1175/JCLI-D-13-00737.1.
Jakub, F., and B. Mayer, 2015: A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models-The TenStream solver. Journal of Quantitative Spectroscopy and Radiative Transfer, 163, 63–71, https://doi.org/10.1016/j.jqsrt.2015.05.003.
Jönsson, A., and F. A. M. Bender, 2022: Persistence and variability of Earth’s interhemispheric albedo symmetry in 19 years of CERES EBAF observations. J. Climate, 35(1), 249–268, https://doi.org/10.1175/JCLI-D-20-0970.1.
King, N. J., and G. Vaughan, 2012: Using passive remote sensing to retrieve the vertical variation of cloud droplet size in marine stratocumulus: An assessment of information content and the potential for improved retrievals from hyperspectral measurements. J. Geophys. Res.: Atmos., 117(D15), D15206, https://doi.org/10.1029/2012JD017896.
Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38(1), L01706, https://doi.org/10.1029/2010GL045777.
Lamer, K., and P. Kollias, 2015: Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover. Geophys. Res. Lett., 42(20), 8693–8701, https://doi.org/10.1002/2015GL064534.
Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48(13), e2021GL093047, https://doi.org/10.1029/2021GL093047.
Loeb, N. G., W. Su, D. R. Doelling, T. Wong, P. Minnis, S. Thomas, and W. F. Miller, 2016: Earth’s top-of-atmosphere radiation budget: Reference Module in Earth Systems and Environmental Sciences. ScienceDirect.
Maier, R., F. Jakub, C. Emde, M. Manev, A. Voigt, and B. Mayer, 2024: A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: The dynamic TenStream solver v1.0. Geoscientific Model Development, 17(8), 3357–3383, https://doi.org/10.5194/gmd-17-3357-2024.
Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3), 377–445, https://doi.org/10.1002/andp.19083300302.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos., 102(D14), 16 663–16 682, https://doi.org/10.1029/97JD00237.
Mlawer, E. J., J. Mascio, D. D. Turner, V. H. Payne, C. J. Flynn, and R. Pincus, 2024: A More Transparent Infrared Window. J. Geophys. Res.: Atmos., 129(22), e2024JD041366, https://doi.org/10.1029/2024JD041366.
Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16(10), 1456–1475, https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORAamp;linebreak/>gt;2.0.CO;2.
Nitta, T., and S. Sekine, 1994: Diurnal variation of convective activity over the tropical Western Pacific. J. Meteor. Soc. Japan, 72(5), 627–641, https://doi.org/10.2151/jmsj1965.72.5_627.
Perez, R., M. David, T. E. Hoff, M. Jamaly, S. Kivalov, J. Kleissl, P. Lauret, and M. Perez, 2016: Spatial and temporal variability of solar energy. Foundations and Trends® in Renewable Energy, 1(1), 1–44, https://doi.org/10.1561/2700000006.
Peterson, J. T., and E. C. Flowers, 1977: Interactions between air pollution and solar radiation. Solar Energy, 19(1), 23–32, https://doi.org/10.1016/0038-092X(77)90085-8.
Pielke, R. A., J. H. Rodriguez, J. L. Eastman, R. L. Walko, and R. A. Stocker, 1993: Influence of albedo variability in complex terrain on mesoscale systems. J. Climate, 6(9), 1798–1806, https://doi.org/10.1175/1520-0442(1993)006<1798:IOAVIC>2.0.CO;2.
Pilewskie, P., M. Hakuba, and G. Stephens, 2023: The future of earth radiation budget observations beyond CERES: Libera and continuity of the ERB climate data record. EGU23, the 25th EGU General Assembly, EGU, Vienna, Austria, https://doi.org/10.5194/egusphere-egu23-17097.
Pincus, R., E. J. Mlawer, and J. S. Delamere, 2019: Balancing accuracy, efficiency, and flexibility in radiation calculations for dynamical models. Journal of Advances in Modeling Earth Systems, 11(10), 3074–3089, https://doi.org/10.1029/2019MS001621.
Planck, M., 1901: Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 309(3), 553–563, https://doi.org/10.1002/andp.19013090310.
Ramanathan, V., 1987: The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res.: Atmos., 92(D4), 4075–4095, https://doi.org/10.1029/JD092iD04p04075.
Riihimaki, L. D., and Coauthors, 2021: The shortwave spectral radiometer for atmospheric science: Capabilities and applications from the ARM user facility. Bull. Amer. Meteor. Soc., 102(3), E539–E554, https://doi.org/10.1175/BAMS-D-19-0227.1.
Roberts, Y. L., P. Pilewskie, and B. C. Kindel, 2011: Evaluating the observed variability in hyperspectral Earth-reflected solar radiance. J. Geophys. Res.: Atmos., 116(D24), D24119, https://doi.org/10.1029/2011JD016448.
Rothman, L. S., 2021: History of the HITRAN database. Nature Reviews Physics, 3(5), 302–304, https://doi.org/10.1038/s42254-021-00309-2.
Rutan, D. A., G. L. Smith, and T. Wong, 2014: Diurnal variations of albedo retrieved from earth radiation budget experiment measurements. J. Appl. Meteorol. Climatol., 53(12), 2747–2760, https://doi.org/10.1175/JAMC-D-13-0119.1.
Saito, M., P. Yang, J. C. Ding, and X. Liu, 2021: A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J. Atmos. Sci., 78, 2089–2111, https://doi.org/10.1175/JAS-D-20-0338.1.
Sandau, R., K. Brieß, and M. D’Errico, 2010: Small satellites for global coverage: Potential and limits. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 492–504, https://doi.org/10.1016/j.isprsjprs.2010.09.003.
Schmidt, K. S., G. Feingold, P. Pilewskie, H. Jiang, O. Coddington, and M. Wendisch, 2009: Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects. Geophys. Res. Lett., 36(7), L07804, https://doi.org/10.1029/2008GL036848.
Shea, Y. L., C. Lukashin, X. Liu, D. R. Feldman, and P. Pilewskie, 2022: An entropy framework for evaluating reflectance observations for climate studies. Earth and Space Science, 9(7), e2019EA000795, https://doi.org/10.1029/2019EA000795.
Shine, K. P., I. V. Ptashnik, and G. Rädel, 2012: The water vapour continuum: Brief history and recent developments. Surveys in Geophysics, 33(3–4), 535–555, https://doi.org/10.1007/s10712-011-9170-y.
Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130(599), 1449–1467, https://doi.org/10.1256/qj.03.165.
Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett., 27(15), 2173–2176, https://doi.org/10.1029/2000GL011436.
Stephens, G., and Coauthors, 2020: The emerging technological revolution in earth observations. Bull. Amer. Meteor. Soc., 101(3), E274–E285, https://doi.org/10.1175/BAMS-D-190146.1.
Stephens, G. L., and S. C. Tsay, 1990: On the cloud absorption anomaly. Quart. J. Roy. Meteor. Soc., 116(493), 671–704, https://doi.org/10.1002/qj.49711649308.
Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. L. Li, 2015: The albedo of Earth. Rev. Geophys., 53(1), 141–163, https://doi.org/10.1002/2014RG000449.
Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the Earth’s water and energy balances. Current Climate Change Reports, 2(4), 135–147, https://doi.org/10.1007/s40641-016-0043-9.
Stephens, G., O. Kalashnikova, J. J. Gristey, P. Pilewskie, D. R. Thompson, X. L. Huang, M. Lebsock, and S. Schmidt, 2021: The spectral nature of Earth’s reflected radiation: Measurement and science applications. Frontiers in Remote Sensing, 2, 664291, https://doi.org/10.3389/FRSEN.2021.664291.
Stephens, G. L., and Coauthors, 2022: The changing nature of Earth’s reflected sunlight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2263), https://doi.org/10.1098/rspa.2022.0053.
Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69(12), 3652–3669, https://doi.org/10.1175/JAS-D-12-088.1.
Thorpe, A. K., and Coauthors, 2023: Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances, 9(46), eadh2391, https://doi.org/10.1126/sciadv.adh2391.
Tian, B. J., B. J. Soden, and X. Q. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res.: Atmos., 109(D10), D10101, https://doi.org/10.1029/2003JD004117.
Várnai, T., 2000: Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci., 57(2), 216–229, https://doi.org/10.1175/1520-0469(2000)057<0216:IOTDRE>2.0.CO;2.
Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56(24), 4206–4224, https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2.
Veerman, M. A., B. J. H. van Stratum, and C. C. van Heerwaarden, 2022: A case study of cumulus convection over land in cloud-resolving simulations with a coupled ray tracer. Geophys. Res. Lett., 49(23), e2022GL100808, https://doi.org/10.1029/2022GL100808.
Villefranque, N., and R. J. Hogan, 2021: Evidence for the 3D radiative effects of boundary-layer clouds from observations of direct and diffuse surface solar fluxes. Geophys. Res. Lett., 48(14), e2021GL093369, https://doi.org/10.1029/2021GL093369.
Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26(2), 468–477, https://doi.org/10.1175/JCLI-D-12-00132.1.
Vonder Haar, T. H., and V. E. Suomi, 1971: Measurements of the Earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28(3), 305–314, https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.
Vonder Haar, T. H., and P. Pilewskie, 2024: A 60+ year perspective of advancement of science results from studies of the Earth’ s radiation budget from space and a proposal for the international ERB consortium. GEWEX Quarterly Report 2024 Q2.
Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9(8), 1712–1730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77(5), 853–868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res.: Atmos., 114(D10), D00D16, https://doi.org/10.1029/2008JD011470.
Wiscombe, W., and C. Chiu, 2013: The next step in Earth radiation budget measurements. AIP Conference Proceedings, 1531, 648–651, https://doi.org/10.1063/1.4804853.
Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29(23), 2092, https://doi.org/10.1029/2002GL015371.
Xia, X. A., D. Z. Yang, and Y. B. Shen, 2025: Fengyun radiation services for solar energy meteorology: Status and perspective. Adv. Atmos. Sci., 42(2), 252–260, https://doi.org/10.1007/s00376-024-3164-4.
Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129(4), 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.
Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm. J. Atmos. Sci., 70(1), 330–347, https://doi.org/10.1175/JAS-D-12-039.1.
Acknowledgements
Receiving the IRC Young Scientist Award and the subsequent writing of this manuscript would not have been possible without the outstanding support and guidance that the author has received. Specific thanks go to Keith SHINE for igniting the author’s interest in atmospheric radiation, Christine CHIU and Robert GURNEY for their unwavering dedication to the author’s PhD training, Graham FEINGOLD for guiding the author’s development as an early-career scientist, as well as Sebastian SCHMIDT, Peter PILEWSKIE, Maria HAKUBA, and Graeme STEPHENS for their fruitful and ongoing collaborations. The author also extends appreciation to the extensive list of coauthors from previous studies that contributed to many of the results highlighted here and two anonymous reviewers for their valuable suggestions that helped to improve this manuscript.
Current funding is acknowledged from the NOAA Atmospheric Science for Renewable Energy (ASRE) program, the Earth Venture Continuity 1 (EVC-1) Libera project under NASA Contract 80LARC20D0006, and the NOAA cooperative agreement with CIRES, NA22OAR4320151. The statements, findings, conclusions, and recommendations are those of the author and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.
Funding
Funding note: Open Access funding provided by Great Western Library Alliance (GWLA)
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is a contribution to the special issue on the International Radiation Symposium (IRS) 2024.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gristey, J.J. A Perspective on Shortwave Radiative Energy Flows in the Earth System. Adv. Atmos. Sci. (2025). https://doi.org/10.1007/s00376-025-5061-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00376-025-5061-x


