Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

A Perspective on Shortwave Radiative Energy Flows in the Earth System

  • Perspectives
  • Open access
  • Published: 28 April 2025
  • (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
A Perspective on Shortwave Radiative Energy Flows in the Earth System
Download PDF
  • Jake J. Gristey1,2,3 
  • 268 Accesses

  • 119 Altmetric

  • 16 Mentions

  • Explore all metrics

Abstract

The study of shortwave (SW) radiation and its interactions with our planet has proven critical for advancing the understanding of the Earth–atmosphere system. Here, the author shares an accessible and high-level perspective on recent progress, surprises encountered, and promising future research directionsa. A brief context for the study of SW radiation is provided, after which three specific aspects are focused upon that the author considers particularly important. First, the significance of three-dimensional (3D) SW radiative effects is highlighted via impacts on surface downward SW radiation in complex cloud fields. Crucially, it is shown that probability distributions of surface radiation can only be reliably simulated when accounting for 3D effects, which has implications for various applications and next-generation atmospheric modeling. Second, the significance of the often overlooked diurnal cycle in global top-of-atmosphere upward SW radiation is underscored by quantifying the controlling properties and processes. Opportunities for improved future satellite observations of the global diurnal cycle are noted. Third, the wealth of information provided by the spectral dimension of SW radiation is demonstrated through the extraction and attribution of SW spectral signatures. It is argued that further exploration of the spectral dimension, aided by the recently launched and upcoming suite of spectrally resolved SW satellite observations, promises a new era of SW radiation research.

Article PDF

Download to read the full article text

Similar content being viewed by others

Advances in research on atmospheric energy propagation and the interactions between different latitudes

Article 01 December 2015

High solar cycle spectral variations inconsistent with stratospheric ozone observations

Article 25 January 2016

Direct observation of Earth’s spectral long-wave feedback parameter

Article Open access 20 April 2023

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Atmospheric Optics
  • Atmospheric Science
  • Environmental Physics
  • Meteorology
  • Space Physics
  • Space Studies
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65(11), 1170–1185, https://doi.org/10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    Article  Google Scholar 

  • Berg, L. K., and E. I. Kassianov, 2008: Temporal variability of fair-weather cumulus statistics at the ACRF SGP site. J. Climate, 21(13), 3344–3358, https://doi.org/10.1175/2007JCLI2266.1.

    Article  Google Scholar 

  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res.: Atmos., 107(D20), LBA 12–1–LBA 12–8, https://doi.org/10.1029/2001JD000427.

    Article  Google Scholar 

  • Campillo, C., R. Fortes, and M. del Henar Prieto, 2012: Solar radiation effect on crop production. Solar Radiation, E. B. Babatunde, Ed., InTech, 167–194, https://doi.org/10.5772/34796.

    Google Scholar 

  • Chen, H., and Coauthors, 2023: The Education and Research 3D Radiative Transfer Toolbox (EaR3T)–towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals. Atmospheric Measurement Techniques, 16(7), 1971–2000, https://doi.org/10.5194/amt-16-1971-2023.

    Article  CAS  Google Scholar 

  • Clark, R. N., and Coauthors, 2024: Imaging Spectroscopy: Earth and Planetary Remote Sensing with the PSI Tetracorder and Expert Systems from Rovers to EMIT and Beyond. The Planetary Science Journal, 5(12), 276, https://doi.org/10.3847/PSJ/AD6C3A.

    Article  Google Scholar 

  • Clough, S. A., and Coauthors, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    Article  CAS  Google Scholar 

  • Coddington, O., P. Pilewskie, and T. Vukicevic, 2012: The Shannon information content of hyperspectral shortwave cloud albedo measurements: Quantification and practical applications. J. Geophys. Res.: Atmos., 117(D4), D04205, https://doi.org/10.1029/2011JD016771.

    Article  Google Scholar 

  • Dai, A. G., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17(5), 930–951, https://doi.org/10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2.

    Article  Google Scholar 

  • Datseris, G., and B. Stevens, 2021: Earth’s albedo and its symmetry. AGU Advances, 2(3), e2021AV000440, https://doi.org/10.1029/2021AV000440.

    Article  Google Scholar 

  • Diamond, M. S., J. J. Gristey, and G. Feingold, 2024: Testing cloud adjustment hypotheses for the maintenance of Earth’s hemispheric albedo symmetry with natural experiments. Geophys. Res. Lett., 51(20), e2024GL111733, https://doi.org/10.1029/2024GL111733.

    Article  Google Scholar 

  • Diamond, M. S., J. J. Gristey, J. E. Kay, and G. Feingold, 2022: Anthropogenic aerosol and cryosphere changes drive Earth’s strong but transient clear-sky hemispheric albedo asymmetry. Communications Earth & Environment, 3(1), 206, https://doi.org/10.1038/s43247-022-00546-y.

    Article  Google Scholar 

  • Ding, J. C., and P. Yang, 2023: Lorenz-Mie theory-type solution for light scattering by spheroids with small-to-large size parameters and aspect ratios. Optics Express, 31(24), 40 937–40 951, https://doi.org/10.1364/OE.505416.

    Article  Google Scholar 

  • Doelling, D., C. Haney, R. Bhatt, B. Scarino, and A. Gopalan, 2018: Geostationary visible imager calibration for the CERES SYN1deg edition 4 product. Remote Sensing, 10(2), 288, https://doi.org/10.3390/rs10020288.

    Article  Google Scholar 

  • Doelling, D. R., and Coauthors, 2013: Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Oceanic Technol., 30(6), 1072–1090, https://doi.org/10.1175/JTECH-D-12-00136.1.

    Article  Google Scholar 

  • Ghiasvand, R., T. E. Robsahm, A. C. Green, C. S. Rueegg, E. Weiderpass, E. Lund, and M. B. Veierød, 2019: Association of phenotypic characteristics and UV radiation exposure with risk of melanoma on different body sites. JAMA Dermatology, 155(1), 39–49, https://doi.org/10.1001/jamadermatol.2018.3964.

    Article  Google Scholar 

  • Goody, R., and R. Haskins, 1998: Calibration of radiances from space. J. Climate, 11(4), 754–758, https://doi.org/10.1175/1520-0442(1998)011<0754:CORFS>2.0.CO;2.

    Article  Google Scholar 

  • Gristey, J. J., and J. C. Chiu, 2024: Understanding our climate system through the lens of spectral reflected solar radiation. AIP Conference Proceedings, 2988, 070004, https://doi.org/10.1063/5.0183587.

    Article  Google Scholar 

  • Gristey, J. J., G. Feingold, K. S. Schmidt, and H. Chen, 2022: Influence of aerosol embedded in shallow cumulus cloud fields on the surface solar irradiance. J. Geophys. Res.: Atmos., 127(11), e2022JD036822, https://doi.org/10.1029/2022JD036822.

    Article  Google Scholar 

  • Gristey, J. J., J. C. Chiu, R. J. Gurney, S. C. Han, and C. J. Morcrette, 2017: Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. J. Geophys. Res.: Atmos., 122(2), 1114–1131, https://doi.org/10.1002/2016JD025514.

    Article  Google Scholar 

  • Gristey, J. J., G. Feingold, I. B. Glenn, K. S. Schmidt, and H. Chen, 2020a: On the relationship between shallow cumulus cloud field properties and surface solar irradiance. Geophys. Res. Lett., 47(22), e2020GL090152, https://doi.org/10.1029/2020GL090152.

    Article  Google Scholar 

  • Gristey, J. J., G. Feingold, I. B. Glenn, K. S. Schmidt, and H. Chen, 2020b: Surface solar irradiance in continental shallow cumulus fields: Observations and large-eddy simulation. J. Atmos. Sci., 77(3), 1065–1080, https://doi.org/10.1175/JAS-D-19-0261.1.

    Article  Google Scholar 

  • Gristey, J. J., J. C. Chiu, R. J. Gurney, C. J. Morcrette, P. G. Hill, J. E. Russell, and H. E. Brindley, 2018: Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model. Atmospheric Chemistry and Physics, 18(7), 5129–5145, https://doi.org/10.5194/acp-18-5129-2018.

    Article  CAS  Google Scholar 

  • Gristey, J. J., J. C. Chiu, R. J. Gurney, K. P. Shine, S. Havemann, J. C. Thelen, and P. G. Hill, 2019: Shortwave spectral radiative signatures and their physical controls. J. Climate, 32(15), 4805–4828, https://doi.org/10.1175/JCLI-D-18-0815.1.

    Article  Google Scholar 

  • Gristey, J. J., and Coauthors, 2023: Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations. Atmospheric Measurement Techniques, 16(15), 3609–3630, https://doi.org/10.5194/amt-16-3609-2023.

    Article  Google Scholar 

  • Hakuba, M. Z., B. C. Kindel, J. J. Gristey, Bodas-A. Salcedo, G. L. Stephens, and P. Pilewskie, 2022: Simulated variability in visible and near-IR irradiances in preparation for the upcoming Libera mission. Paper presented at the International Radiation Symposium, Thessaloniki, https://www.irs2022.org/.

    Google Scholar 

  • Harber, D., and Coauthors, 2019: Compact total irradiance monitor flight demonstration. Proc. SPIE 11131, CubeSats and Small-Sats for Remote Sensing III, San Diego, California, United States, SPIE, 97–104, https://doi.org/10.1117/12.2531308.

    Google Scholar 

  • He, Z. L., Q. Libois, N. Villefranque, H. Deneke, J. Witthuhn, and F. Couvreux, 2024: Combining observations and simulations to investigate the small-scale variability of surface solar irradiance under continental cumulus clouds. Atmospheric Chemistry and Physics, 24(19), 11 391–11 408, https://doi.org/10.5194/acp-24-11391-2024.

    Article  CAS  Google Scholar 

  • Hocking, T., T. Mauritsen, and L. Megner, 2024: Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers. Atmospheric Measurement Techniques, 17(24), 7077–7095, https://doi.org/10.5194/amt-17-7077-2024.

    Article  Google Scholar 

  • Hogan, R. J., and J. K. P. Shonk, 2013: Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes. J. Atmos. Sci., 70(2), 708–724, https://doi.org/10.1175/JAS-D-12-041.1.

    Article  Google Scholar 

  • Hogan, R. J., S. A. K. Schäfer, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-D cloud radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res.: Atmos., 121(14), 8583–8599, https://doi.org/10.1002/2016JD024876.

    Article  Google Scholar 

  • Itterly, K. F., and P. C. Taylor, 2014: Evaluation of the tropical TOA flux diurnal cycle in MERRA and ERA-interim retrospective analyses. J. Climate, 27(13), 4781–4796, https://doi.org/10.1175/JCLI-D-13-00737.1.

    Article  Google Scholar 

  • Jakub, F., and B. Mayer, 2015: A three-dimensional parallel radiative transfer model for atmospheric heating rates for use in cloud resolving models-The TenStream solver. Journal of Quantitative Spectroscopy and Radiative Transfer, 163, 63–71, https://doi.org/10.1016/j.jqsrt.2015.05.003.

    Article  CAS  Google Scholar 

  • Jönsson, A., and F. A. M. Bender, 2022: Persistence and variability of Earth’s interhemispheric albedo symmetry in 19 years of CERES EBAF observations. J. Climate, 35(1), 249–268, https://doi.org/10.1175/JCLI-D-20-0970.1.

    Article  Google Scholar 

  • King, N. J., and G. Vaughan, 2012: Using passive remote sensing to retrieve the vertical variation of cloud droplet size in marine stratocumulus: An assessment of information content and the potential for improved retrievals from hyperspectral measurements. J. Geophys. Res.: Atmos., 117(D15), D15206, https://doi.org/10.1029/2012JD017896.

    Article  Google Scholar 

  • Kopp, G., and J. L. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38(1), L01706, https://doi.org/10.1029/2010GL045777.

    Article  Google Scholar 

  • Lamer, K., and P. Kollias, 2015: Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover. Geophys. Res. Lett., 42(20), 8693–8701, https://doi.org/10.1002/2015GL064534.

    Article  Google Scholar 

  • Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48(13), e2021GL093047, https://doi.org/10.1029/2021GL093047.

    Article  Google Scholar 

  • Loeb, N. G., W. Su, D. R. Doelling, T. Wong, P. Minnis, S. Thomas, and W. F. Miller, 2016: Earth’s top-of-atmosphere radiation budget: Reference Module in Earth Systems and Environmental Sciences. ScienceDirect.

    Google Scholar 

  • Maier, R., F. Jakub, C. Emde, M. Manev, A. Voigt, and B. Mayer, 2024: A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: The dynamic TenStream solver v1.0. Geoscientific Model Development, 17(8), 3357–3383, https://doi.org/10.5194/gmd-17-3357-2024.

    Article  Google Scholar 

  • Mie, G., 1908: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3), 377–445, https://doi.org/10.1002/andp.19083300302.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos., 102(D14), 16 663–16 682, https://doi.org/10.1029/97JD00237.

    Article  CAS  Google Scholar 

  • Mlawer, E. J., J. Mascio, D. D. Turner, V. H. Payne, C. J. Flynn, and R. Pincus, 2024: A More Transparent Infrared Window. J. Geophys. Res.: Atmos., 129(22), e2024JD041366, https://doi.org/10.1029/2024JD041366.

    Article  Google Scholar 

  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16(10), 1456–1475, https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORAamp;linebreak/>gt;2.0.CO;2.

    Article  Google Scholar 

  • Nitta, T., and S. Sekine, 1994: Diurnal variation of convective activity over the tropical Western Pacific. J. Meteor. Soc. Japan, 72(5), 627–641, https://doi.org/10.2151/jmsj1965.72.5_627.

    Article  Google Scholar 

  • Perez, R., M. David, T. E. Hoff, M. Jamaly, S. Kivalov, J. Kleissl, P. Lauret, and M. Perez, 2016: Spatial and temporal variability of solar energy. Foundations and Trends® in Renewable Energy, 1(1), 1–44, https://doi.org/10.1561/2700000006.

    Article  Google Scholar 

  • Peterson, J. T., and E. C. Flowers, 1977: Interactions between air pollution and solar radiation. Solar Energy, 19(1), 23–32, https://doi.org/10.1016/0038-092X(77)90085-8.

    Article  Google Scholar 

  • Pielke, R. A., J. H. Rodriguez, J. L. Eastman, R. L. Walko, and R. A. Stocker, 1993: Influence of albedo variability in complex terrain on mesoscale systems. J. Climate, 6(9), 1798–1806, https://doi.org/10.1175/1520-0442(1993)006<1798:IOAVIC>2.0.CO;2.

    Article  Google Scholar 

  • Pilewskie, P., M. Hakuba, and G. Stephens, 2023: The future of earth radiation budget observations beyond CERES: Libera and continuity of the ERB climate data record. EGU23, the 25th EGU General Assembly, EGU, Vienna, Austria, https://doi.org/10.5194/egusphere-egu23-17097.

    Google Scholar 

  • Pincus, R., E. J. Mlawer, and J. S. Delamere, 2019: Balancing accuracy, efficiency, and flexibility in radiation calculations for dynamical models. Journal of Advances in Modeling Earth Systems, 11(10), 3074–3089, https://doi.org/10.1029/2019MS001621.

    Article  Google Scholar 

  • Planck, M., 1901: Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 309(3), 553–563, https://doi.org/10.1002/andp.19013090310.

    Article  Google Scholar 

  • Ramanathan, V., 1987: The role of earth radiation budget studies in climate and general circulation research. J. Geophys. Res.: Atmos., 92(D4), 4075–4095, https://doi.org/10.1029/JD092iD04p04075.

    Article  Google Scholar 

  • Riihimaki, L. D., and Coauthors, 2021: The shortwave spectral radiometer for atmospheric science: Capabilities and applications from the ARM user facility. Bull. Amer. Meteor. Soc., 102(3), E539–E554, https://doi.org/10.1175/BAMS-D-19-0227.1.

    Article  Google Scholar 

  • Roberts, Y. L., P. Pilewskie, and B. C. Kindel, 2011: Evaluating the observed variability in hyperspectral Earth-reflected solar radiance. J. Geophys. Res.: Atmos., 116(D24), D24119, https://doi.org/10.1029/2011JD016448.

    Article  Google Scholar 

  • Rothman, L. S., 2021: History of the HITRAN database. Nature Reviews Physics, 3(5), 302–304, https://doi.org/10.1038/s42254-021-00309-2.

    Article  Google Scholar 

  • Rutan, D. A., G. L. Smith, and T. Wong, 2014: Diurnal variations of albedo retrieved from earth radiation budget experiment measurements. J. Appl. Meteorol. Climatol., 53(12), 2747–2760, https://doi.org/10.1175/JAMC-D-13-0119.1.

    Article  Google Scholar 

  • Saito, M., P. Yang, J. C. Ding, and X. Liu, 2021: A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J. Atmos. Sci., 78, 2089–2111, https://doi.org/10.1175/JAS-D-20-0338.1.

    Google Scholar 

  • Sandau, R., K. Brieß, and M. D’Errico, 2010: Small satellites for global coverage: Potential and limits. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 492–504, https://doi.org/10.1016/j.isprsjprs.2010.09.003.

    Article  Google Scholar 

  • Schmidt, K. S., G. Feingold, P. Pilewskie, H. Jiang, O. Coddington, and M. Wendisch, 2009: Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects. Geophys. Res. Lett., 36(7), L07804, https://doi.org/10.1029/2008GL036848.

    Article  Google Scholar 

  • Shea, Y. L., C. Lukashin, X. Liu, D. R. Feldman, and P. Pilewskie, 2022: An entropy framework for evaluating reflectance observations for climate studies. Earth and Space Science, 9(7), e2019EA000795, https://doi.org/10.1029/2019EA000795.

    Article  Google Scholar 

  • Shine, K. P., I. V. Ptashnik, and G. Rädel, 2012: The water vapour continuum: Brief history and recent developments. Surveys in Geophysics, 33(3–4), 535–555, https://doi.org/10.1007/s10712-011-9170-y.

    Article  Google Scholar 

  • Slingo, A., K. I. Hodges, and G. J. Robinson, 2004: Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7. Quart. J. Roy. Meteor. Soc., 130(599), 1449–1467, https://doi.org/10.1256/qj.03.165.

    Article  Google Scholar 

  • Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett., 27(15), 2173–2176, https://doi.org/10.1029/2000GL011436.

    Article  Google Scholar 

  • Stephens, G., and Coauthors, 2020: The emerging technological revolution in earth observations. Bull. Amer. Meteor. Soc., 101(3), E274–E285, https://doi.org/10.1175/BAMS-D-190146.1.

    Article  Google Scholar 

  • Stephens, G. L., and S. C. Tsay, 1990: On the cloud absorption anomaly. Quart. J. Roy. Meteor. Soc., 116(493), 671–704, https://doi.org/10.1002/qj.49711649308.

    Article  Google Scholar 

  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. L. Li, 2015: The albedo of Earth. Rev. Geophys., 53(1), 141–163, https://doi.org/10.1002/2014RG000449.

    Article  Google Scholar 

  • Stephens, G. L., M. Z. Hakuba, M. Hawcroft, J. M. Haywood, A. Behrangi, J. E. Kay, and P. J. Webster, 2016: The curious nature of the hemispheric symmetry of the Earth’s water and energy balances. Current Climate Change Reports, 2(4), 135–147, https://doi.org/10.1007/s40641-016-0043-9.

    Article  Google Scholar 

  • Stephens, G., O. Kalashnikova, J. J. Gristey, P. Pilewskie, D. R. Thompson, X. L. Huang, M. Lebsock, and S. Schmidt, 2021: The spectral nature of Earth’s reflected radiation: Measurement and science applications. Frontiers in Remote Sensing, 2, 664291, https://doi.org/10.3389/FRSEN.2021.664291.

    Article  Google Scholar 

  • Stephens, G. L., and Coauthors, 2022: The changing nature of Earth’s reflected sunlight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2263), https://doi.org/10.1098/rspa.2022.0053.

  • Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69(12), 3652–3669, https://doi.org/10.1175/JAS-D-12-088.1.

    Article  Google Scholar 

  • Thorpe, A. K., and Coauthors, 2023: Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances, 9(46), eadh2391, https://doi.org/10.1126/sciadv.adh2391.

    Article  CAS  Google Scholar 

  • Tian, B. J., B. J. Soden, and X. Q. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res.: Atmos., 109(D10), D10101, https://doi.org/10.1029/2003JD004117.

    Article  Google Scholar 

  • Várnai, T., 2000: Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci., 57(2), 216–229, https://doi.org/10.1175/1520-0469(2000)057<0216:IOTDRE>2.0.CO;2.

    Article  Google Scholar 

  • Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56(24), 4206–4224, https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2.

    Article  Google Scholar 

  • Veerman, M. A., B. J. H. van Stratum, and C. C. van Heerwaarden, 2022: A case study of cumulus convection over land in cloud-resolving simulations with a coupled ray tracer. Geophys. Res. Lett., 49(23), e2022GL100808, https://doi.org/10.1029/2022GL100808.

    Article  Google Scholar 

  • Villefranque, N., and R. J. Hogan, 2021: Evidence for the 3D radiative effects of boundary-layer clouds from observations of direct and diffuse surface solar fluxes. Geophys. Res. Lett., 48(14), e2021GL093369, https://doi.org/10.1029/2021GL093369.

    Article  Google Scholar 

  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26(2), 468–477, https://doi.org/10.1175/JCLI-D-12-00132.1.

    Article  Google Scholar 

  • Vonder Haar, T. H., and V. E. Suomi, 1971: Measurements of the Earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means. J. Atmos. Sci., 28(3), 305–314, https://doi.org/10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.

    Article  Google Scholar 

  • Vonder Haar, T. H., and P. Pilewskie, 2024: A 60+ year perspective of advancement of science results from studies of the Earth’ s radiation budget from space and a proposal for the international ERB consortium. GEWEX Quarterly Report 2024 Q2.

    Google Scholar 

  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9(8), 1712–1730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    Article  Google Scholar 

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77(5), 853–868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    Article  Google Scholar 

  • Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res.: Atmos., 114(D10), D00D16, https://doi.org/10.1029/2008JD011470.

    Article  Google Scholar 

  • Wiscombe, W., and C. Chiu, 2013: The next step in Earth radiation budget measurements. AIP Conference Proceedings, 1531, 648–651, https://doi.org/10.1063/1.4804853.

    Article  Google Scholar 

  • Wood, R., C. S. Bretherton, and D. L. Hartmann, 2002: Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys. Res. Lett., 29(23), 2092, https://doi.org/10.1029/2002GL015371.

    Article  Google Scholar 

  • Xia, X. A., D. Z. Yang, and Y. B. Shen, 2025: Fengyun radiation services for solar energy meteorology: Status and perspective. Adv. Atmos. Sci., 42(2), 252–260, https://doi.org/10.1007/s00376-024-3164-4.

    Article  Google Scholar 

  • Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129(4), 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    Article  Google Scholar 

  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm. J. Atmos. Sci., 70(1), 330–347, https://doi.org/10.1175/JAS-D-12-039.1.

    Article  Google Scholar 

Download references

Acknowledgements

Receiving the IRC Young Scientist Award and the subsequent writing of this manuscript would not have been possible without the outstanding support and guidance that the author has received. Specific thanks go to Keith SHINE for igniting the author’s interest in atmospheric radiation, Christine CHIU and Robert GURNEY for their unwavering dedication to the author’s PhD training, Graham FEINGOLD for guiding the author’s development as an early-career scientist, as well as Sebastian SCHMIDT, Peter PILEWSKIE, Maria HAKUBA, and Graeme STEPHENS for their fruitful and ongoing collaborations. The author also extends appreciation to the extensive list of coauthors from previous studies that contributed to many of the results highlighted here and two anonymous reviewers for their valuable suggestions that helped to improve this manuscript.

Current funding is acknowledged from the NOAA Atmospheric Science for Renewable Energy (ASRE) program, the Earth Venture Continuity 1 (EVC-1) Libera project under NASA Contract 80LARC20D0006, and the NOAA cooperative agreement with CIRES, NA22OAR4320151. The statements, findings, conclusions, and recommendations are those of the author and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.

Funding

Funding note: Open Access funding provided by Great Western Library Alliance (GWLA)

Author information

Authors and Affiliations

  1. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA

    Jake J. Gristey

  2. NOAA Chemical Sciences Laboratory, Boulder, CO, 80305, USA

    Jake J. Gristey

  3. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, 80303, USA

    Jake J. Gristey

Authors
  1. Jake J. Gristey
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Jake J. Gristey.

Additional information

This paper is a contribution to the special issue on the International Radiation Symposium (IRS) 2024.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gristey, J.J. A Perspective on Shortwave Radiative Energy Flows in the Earth System. Adv. Atmos. Sci. (2025). https://doi.org/10.1007/s00376-025-5061-x

Download citation

  • Received: 05 February 2025

  • Revised: 05 March 2025

  • Accepted: 18 March 2025

  • Published: 28 April 2025

  • DOI: https://doi.org/10.1007/s00376-025-5061-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • shortwave radiation
  • Earth radiation budget
  • three-dimensional radiative effects
  • diurnal cycle
  • spectral variability
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

The International Radiation Symposium (IRS) 2024

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature