Abstract
Worldwide radiation records suggest that the amount of sunlight received at the Earth’s surface (surface solar radiation, SSR) has not been stable over the years, but underwent significant decadal variations, popularly also known as “global dimming and brightening”. These variations have been particularly evident in China, where the SSR substantially declined from the 1960s to the 1990s (dimming), with indications for a trend reversal in the 2000s and a slight recovery (brightening) in recent years. This perspective/review paper will discuss recent updates and remaining challenges regarding our knowledge of the magnitudes, causes, and implications of these variations in SSR worldwide, with a particular emphasis on the developments in China.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
Allen, R. J., J. R. Norris, and M. Wild, 2013: Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J. Geophys. Res.: Atmos., 118, 6311–6336, https://doi.org/10.1002/jgrd.50426.
Antuña-Marrero, J. C., F. García, R. Estevan, B. Barja, and A. Sánchez-Lorenzo, 2019: Simultaneous dimming and brightening under all and clear sky at Camagüey, Cuba (1981–2010). Journal of Atmospheric and Solar-Terrestrial Physics, 190, 45–53, https://doi.org/10.1016/j.jastp.2019.05.004.
Aparicio, A. J. P., M. C. Gallego, M. Anton, and J. M. Vaquero, 2020: Relationship between solar activity and direct solar irradiance in Madrid (1910–1929). Atmospheric Research, 235, 104766, https://doi.org/10.1016/j.atmosres.2019.104766.
Augustine, J. A., and A. Capotondi, 2022: Forcing for multidecadal surface solar radiation trends over northern hemisphere continents. J. Geophys. Res.: Atmos., 127, e2021JD036342, https://doi.org/10.1029/2021JD036342.
Bergin, M. H., C. Ghoroi, D. Dixit, J. J. Schauer, and D. T. Shindell, 2017: Large reductions in solar energy production due to dust and particulate air pollution. Environmental Science & Technology Letters, 4, 339–344, https://doi.org/10.1021/acs.estlett.7b00197.
Che, H. Z., G. Y. Shi, X. Y. Zhang, R. Arimoto, J. Q. Zhao, L. Xu, B. Wang, and Z. H. Chen, 2005: Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett., 32, L06803, https://doi.org/10.1029/2004GL022322.
Chen, Q. X., C. L. Huang, Z. H. Ruan, M. Xu, H. X. Li, X. L. Han, S. K. Dong, and X. Yang, 2025: Accelerated surface brightening in China: The decisive role of reduced anthropogenic aerosol emissions. Atmos. Environ., 340, 120893, https://doi.org/10.1016/j.atmosenv.2024.120893.
Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2022: Internal variability of all-sky and clear-sky surface solar radiation on decadal timescales. J. Geophys. Res.: Atmos., 127, e2021JD036332, https://doi.org/10.1029/2021JD036332.
Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2023: Internal variability of the climate system mirrored in decadal-scale trends of surface solar radiation. J. Geophys. Res.: Atmos., 128, e2023JD038573, https://doi.org/10.1029/2023JD038573.
Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2024: Shortwave radiative flux variability through the lens of the pacific decadal oscillation. J. Geophys. Res.: Atmos., 129, e2023JD040520, https://doi.org/10.1029/2023JD040520.
Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024a: Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century. Atmospheric Chemistry and Physics, 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024.
Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024b: From internal variability to aerosol effects: Physical mechanisms behind observed decadal trends in surface solar radiation in the western Pacific Ocean. J. Geophys. Res.: Atmos., 129, e2024JD041014, https://doi.org/10.1029/2024JD041014.
Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024c: Causes for decadal trends in surface solar radiation in the alpine region in the 1981–2020 period. J. Geophys. Res.: Atmos., 129, e2023JD039998, https://doi.org/10.1029/2023JD039998.
Dehghan, Z., M. Ebrahimpour, F. Fathian, and F. Zare, 2017: Trend assessment of sunshine duration, cloudiness, and reference evapotranspiration for exploring global dimming/brightening in Tehran. Modeling Earth Systems and Environment, 3, 6, https://doi.org/10.1007/s40808-017-0278-z.
Du, J. Z., K. C. Wang, J. K. Wang, and Q. Ma, 2017: Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003. Atmospheric Chemistry and Physics, 17, 4931–4944, https://doi.org/10.5194/acp-17-4931-2017.
Dwyer, J. G., J. R. Norris, and C. Ruckstuhl, 2010: Do climate models reproduce observed solar dimming and brightening over China and Japan. J. Geophys. Res.: Atmos., 115, D00K08, https://doi.org/10.1029/2009JD012945.
Fang, H. J., W. M. Qin, L. C. Wang, M. Zhang, and X. F. Yang, 2021: Solar brightening/dimming over China’s Mainland: Effects of atmospheric aerosols, anthropogenic emissions, and meteorological conditions. Remote Sensing, 13, 88, https://doi.org/10.3390/rs13010088.
Feng, F., and K. C. Wang, 2019a: Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses. J. Geophys. Res.: Atmos., 124, 9161–9182, https://doi.org/10.1029/2018JD030214.
Feng, F., and K. C. Wang, 2019b: Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China. International Journal of Climatology, 39, 1305–1318, https://doi.org/10.1002/joc.5881.
Folini, D., T. N. Dallafior, M. Z. Hakuba, and M. Wild, 2017: Trends of surface solar radiation in unforced CMIP5 simulations. J. Geophys. Res.: Atmos., 122, 469–484, https://doi.org/10.1002/2016JD025869.
Gan, C. M., J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei, 2014: Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks. Atmospheric Chemistry and Physics, 14, 1701–1715, https://doi.org/10.5194/acp-14-1701-2014.
Gedney, N., C. Huntingford, G. P. Weedon, N. Bellouin, O. Boucher, and P. M. Cox, 2014: Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 7, 796–800, https://doi.org/10.1038/ngeo2263.
Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Gilgen, H., M. Wild, and A. Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Climate, 11, 2042–2061, https://doi.org/10.1175/1520-0442(1998)011<2042:MATOSI>2.0.CO;2.
Gu, Y. Q., and Coauthors, 2017: The effects of global dimming on the wheat crop grown in the Yangtze Basin of China simulated by SUCROS_LL, a process-based model. Ecological Modelling, 350, 42–54, https://doi.org/10.1016/j.ecolmodel.2017.02.009.
Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435, https://doi.org/10.1126/science.1110252.
Hatzianastassiou, N., and Coauthors, 2020: Global dimming and brightening features during the first decade of the 21st century. Atmosphere, 11, 308, https://doi.org/10.3390/atmos11030308.
He, Y. Y., K. C. Wang, C. Zhou, and M. Wild, 2018: A revisit of global dimming and brightening based on the sunshine duration. Geophys. Res. Lett., 45, 4281–4289, https://doi.org/10.1029/2018GL077424.
He, Y. Y., K. C. Wang, and F. Feng, 2021: Improvement of ERA5 over ERA-Interim in simulating surface incident solar radiation throughout China. J. Climate, 34, 3853–3867, https://doi.org/10.1175/JCLI-D-20-0300.1.
He, Y. Y., K. Yang, M. Wild, K. C. Wang, D. Tong, C. K. Shao, and T. J. Zhou, 2023: Constrained future brightening of solar radiation and its implication for China’s solar power. National Science Review, 10, nwac242, https://doi.org/10.1093/nsr/nwac242.
Huss, M., M. Funk, and A. Ohmura, 2009: Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys. Res. Lett., 36, L23501, https://doi.org/10.1029/2009GL040789.
Imamovic, A., K. Tanaka, D. Folini, and M. Wild, 2016: Global dimming and urbanization: Did stronger negative SSR trends collocate with regions of population growth. Atmospheric Chemistry and Physics, 16, 2719–2725, https://doi.org/10.5194/acp-16-2719-2016.
Jiao, B. Y., Y. C. Su, Q. X. Li, V. Manara, and M. Wild, 2023: An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach. Earth System Science Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023.
Jiao, B. Y., Y. C. Su, Z. C. Li, L. S. Liao, Q. X. Li, and M. Wild, 2024: An effort to distinguish the effects of cloud cover and aerosols on the decadal variations of surface solar radiation in the Northern Hemisphere. Environmental Research Letters, 19, 074012, https://doi.org/10.1088/1748-9326/AD5371.
Julsrud, I. R., T. Storelvmo, M. Schulz, K. O. Moseid, and M. Wild, 2022: Disentangling aerosol and cloud effects on dimming and brightening in observations and CMIP6. J. Geophys. Res.: Atmos., 127, e2021JD035476, https://doi.org/10.1029/2021JD035476.
Kaiser, D. P., and Y. Qian, 2002: Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution. Geophys. Res. Lett., 29, 2042, https://doi.org/10.1029/2002GL016057.
Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1.
Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8, 014003, https://doi.org/10.1088/1748-9326/8/1/014003.
Li, J., Y. W. Jiang, X. G. Xia, and Y. Y. Hu, 2018: Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environmental Research Letters, 13, 034006, https://doi.org/10.1088/1748-9326/aaa35a.
Li, J. X., W. Z. Ma, S. Yang, G. Liu, S. Y. Chen, and M. H. Ding, 2022: Northern dimming and southern brightening in eastern China during the first decade of the 21st century. Frontiers in Environmental Science, 10, 1003526, https://doi.org/10.3389/fenvs.2022.1003526.
Li, M., and Coauthors, 2017a: Anthropogenic emission inventories in China: A review. National Science Review, 4, 834–866, https://doi.org/10.1093/nsr/nwx150.
Li, X. Q., Q. X. Li, M. Wild, and P. Jones, 2024: An intensification of surface Earth’s energy imbalance since the late 20th century. Communications Earth & Environment, 5, 644, https://doi.org/10.1038/s43247-024-01802-z.
Li, X. Y., F. Wagner, W. Peng, J. N. Yang, and D. L. Mauzerall, 2017b: Reduction of solar photovoltaic resources due to air pollution in China. Proceedings of the National Academy of Sciences of the United States of America, 114, 11867–11872, https://doi.org/10.1073/pnas.1711462114.
Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Annales Geophysicae, 23, 2425–2432, https://doi.org/10.5194/angeo-23-2425-2005.
Liepert, B. G., P. Fabian, and H. Grassl, 1994: Solar radiation in Germany-observed trends and an assessment of their causes; Part I: Regional approach. Beitraege zur Physik der Atmosphaere, 67, 15–29.
Liu, B. H., M. Xu, M. Henderson, and W. G. Gong, 2004a: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res.: Atmos., 109, D15102, https://doi.org/10.1029/2004JD004511.
Liu, B. H., M. Xu, M. Henderson, Y. Qi, and Y. Q. Li, 2004b: Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000. J. Climate, 17, 4453–4462, https://doi.org/10.1175/3230.1.
Liu, M. Q., X. H. Fan, X. A. Xia, J. Q. Zhang, and J. Li, 2023: Value-added products derived from 15 years of high-quality surface solar radiation measurements at Xianghe, a suburban site in the North China Plain. Adv. Atmos. Sci., 40, 1132–1141, https://doi.org/10.1007/s00376-022-2205-0.
Liu, Z. J., X. G. Yang, X. M. Lin, Z. T. Zhang, S. Sun, and Q. Ye, 2021: From dimming to brightening during 1961 to 2014 in the maize growing season of China. Food and Energy Security, 10, 329–340, https://doi.org/10.1002/fes3.275.
Loeb, N. G., T. J. Thorsen, J. R. Norris, H. L. Wang, and W. Y. Su, 2018: Changes in earth’s energy budget during and after the “Pause” in global warming: An observational perspective. Climate, 6, 62, https://doi.org/10.3390/cli6030062.
Lu, N., L. Yao, J. Qin, K. Yang, M. Wild, and H. Jiang, 2022: High emission scenario substantially damages China’s photovoltaic potential. Geophys. Res. Lett., 49, e2022GL100068, https://doi.org/10.1029/2022GL100068.
Ma, Q., K. C. Wang, Y. Y. He, L. Y. Su, Q. Z. Wu, H. Liu, and Y. R. Zhang, 2022: Homogenized century-long surface incident solar radiation over Japan. Earth System Science Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022.
Manara, V., M. Brunetti, A. Celozzi, M. Maugeri, A. Sanchez-Lorenzo, and M. Wild, 2016: Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmospheric Chemistry and Physics, 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016.
Manara, V., M. Brunetti, M. Maugeri, A. Sanchez-Lorenzo, and M. Wild, 2017: Sunshine duration and global radiation trends in Italy (1959–2013): To what extent do they agree. J. Geophys. Res.: Atmos., 122, 4312–4331, https://doi.org/10.1002/2016JD026374.
Meng, Q. F., B. H. Liu, H. S. Yang, and X. P. Chen, 2020: Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security, 9, e235, https://doi.org/10.1002/fes3.235.
Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014–1017, https://doi.org/10.1038/nature07949.
Montero-Martín, J., M. Antón, J. M. Vaquero, R. Román, J. Vaquero-Martinez, A. J. P. Aparicio, and A. Sanchez-Lorenzo, 2023: Reconstruction of daily global solar radiation under all-sky and cloud-free conditions in Badajoz (Spain) since 1929. International Journal of Climatology, 43, 3523–3537, https://doi.org/10.1002/joc.8042.
Moseid, K. O., and Coauthors, 2020: Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020.
Müller, B., M. Wild, A. Driesse, and K. Behrens, 2014: Rethinking solar resource assessments in the context of global dimming and brightening. Solar Energy, 99, 272–282, https://doi.org/10.1016/j.solener.2013.11.013.
Ohmura, A., H. Lang, J. Lenoble, and J. Geleyn, 1989: Secular variation of global radiation in Europe. Current Problems in Atmospheric Radiation, J. Leonoble, and J. F. Geleyn, Eds., Deepack Publ., 298–231.
Oikonomakis, E., S. Aksoyoglu, M. Wild, G. Ciarelli, U. Baltensperger, and A. S. H. Prévôt, 2018: Solar “brightening” impact on summer surface ozone between 1990 and 2010 in Europe - a model sensitivity study of the influence of the aerosol-radiation interactions. Atmospheric Chemistry and Physics, 18, 9741–9765, https://doi.org/10.5194/acp-18-9741-2018.
Pfeifroth, U., A. Sanchez-Lorenzo, V. Manara, J. Trentmann, and R. Hollmann, 2018: Trends and variability of surface solar radiation in europe based on surface- and satellite-based data records. J. Geophys. Res.: Atmos., 123, 1735–1754, https://doi.org/10.1002/2017JD027418.
Qian, Y., W. G. Wang, L. R. Leung, and D. P. Kaiser, 2007: Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophys. Res. Lett., 34, L12804, https://doi.org/10.1029/2006GL028800.
Salman, D. M., 2014: What are the hidden global food crises that challenge future development. International Journal of Development and Sustainability, 3, 20–37.
Sanchez-Lorenzo, A., M. Wild, M. Brunetti, J. A. Guijarro, M. Z. Hakuba, J. Calbó, S. Mystakidis, and B. Bartok, 2015: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res.: Atmos., 120, 9555–9569, https://doi.org/10.1002/2015JD023321.
Sanchez-Lorenzo, A., A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt, and M. Z. Hakuba, 2017: Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010. Remote Sens. Environ., 189, 108–117, https://doi.org/10.1016/j.rse.2016.11.018.
Schumacher, D. L., J. Singh, M. Hauser, E. M. Fischer, M. Wild, and S. I. Seneviratne, 2024: Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Communications Earth & Environment, 5, 182, https://doi.org/10.1038/s43247-024-01332-8.
Schwarz, M., D. Folini, S. Yang, R. P. Allan, and M. Wild, 2020: Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nature Geoscience, 13, 110–115, https://doi.org/10.1038/s41561-019-0528-y.
Shi, G. Y., T. Hayasaka, A. Ohmura, Z. H. Chen, B. Wang, J. Q. Zhao, H. Z. Che, and L. Xu, 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatol., 47, 1006–1016, https://doi.org/10.1175/2007JAMC1493.1.
Shi, H. R., and Coauthors, 2021: Surface brightening in eastern and central China since the implementation of the clean air action in 2013: Causes and implications. Geophys. Res. Lett., 48, e2020GL091105, https://doi.org/10.1029/2020GL091105.
Song, Z., S. L. Cao, and H. X. Yang, 2023: Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches. Applied Energy, 339, 121005, https://doi.org/10.1016/j.apenergy.2023.121005.
Soni, P., R. Srivastava, and S. Tripathi, 2019: Implication of data uncertainty in the detection of surface radiation trends and observational evidence of renewed solar dimming over India. Theor. Appl. Climatol., 137, 2663–2680, https://doi.org/10.1007/s00704-018-2743-7.
Soni, V. K., G. Pandithurai, and D. S. Pai, 2016: Is there a transition of solar radiation from dimming to brightening over India. Atmospheric Research, 169, 209–224, https://doi.org/10.1016/j.atmosres.2015.10.010.
Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2022: Interdecadal changes of the MERRA-2 incoming surface solar radiation (SSR) and evaluation against GEBA & BSRN stations. Applied Sciences, 12, 10176, https://doi.org/10.3390/app121910176.
Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2023: An assessment of global dimming and brightening during 1984–2018 using the FORTH radiative transfer model and ISCCP satellite and MERRA-2 reanalysis data. Atmosphere, 14, 1258, https://doi.org/10.3390/atmos14081258.
Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2024: How strong are the links between global warming and surface solar radiation changes. Climatic Change, 177, 156, https://doi.org/10.1007/s10584-024-03810-6.
Stanhill, G., and S. Moreshet, 1992: Global radiation climate changes: The world network. Climatic Change, 21, 57–75, https://doi.org/10.1007/BF00143253.
Stanhill, G., and S. Cohen, 2001: Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107, 255–278, https://doi.org/10.1016/S0168-1923(00)00241-0.
Storelvmo, T., U. K. Heede, T. Leirvik, P. C. B. Phillips, P. Arndt, and M. Wild, 2018: Lethargic response to aerosol emissions in current climate models. Geophys. Res. Lett., 45, 9814–9823, https://doi.org/10.1029/2018GL078298.
Streets, D. G., and Coauthors, 2009: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res.: Atmos., 114, D00D18, https://doi.org/10.1029/2008JD011624.
Suraqui, S., H. Tabor, W. H. Klein, and B. Goldberg, 1974: Solar radiation changes at Mt. St. Katherine after forty years. Solar Energy, 16, 155–158, https://doi.org/10.1016/0038-092X(74)90012-7.
Sweerts, B., S. Pfenninger, S. Yang, D. Folini, B. van der Zwaan, and M. Wild, 2019: Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nature Energy, 4, 657–663, https://doi.org/10.1038/s41560-019-0412-4.
Tanaka, K., A. Ohmura, D. Folini, M. Wild, and N. Ohkawara, 2016: Is global dimming and brightening in Japan limited to urban areas? Atmospheric Chemistry and Physics, 16, 13969–14001, https://doi.org/10.5194/acp-16-13969-2016.
Tang, W. J., K. Yang, J. Qin, C. C. K. Cheng, and J. He, 2011: Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmospheric Chemistry and Physics, 11, 393–406, https://doi.org/10.5194/acp-11-393-2011.
von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.
Wang, K., H. Ye, F. Chen, Y. Z. Xiong, and C. P. Wang, 2012a: Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Climate, 25, 1022–1027, https://doi.org/10.1175/JCLI-D-10-05030.1.
Wang, K. C., 2014: Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation. Scientific Reports, 4, 6144, https://doi.org/10.1038/srep06144.
Wang, K. C., and R. E. Dickinson, 2013: Contribution of solar radiation to decadal temperature variability over land. Proceedings of the National Academy of Sciences of the United States of America, 110, 14877–14882, https://doi.org/10.1073/pnas.1311433110.
Wang, K. C., R. E. Dickinson, and S. L. Liang, 2009: Clear sky visibility has decreased over land globally from 1973 to 2007. Science, 323, 1468–1470, https://doi.org/10.1126/science.1167549.
Wang, K. C., R. E. Dickinson, M. Wild, and S. L. Liang, 2010: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res.: Atmos., 115, D20113, https://doi.org/10.1029/2010JD013847.
Wang, K. C., R. E. Dickinson, M. Wild, and S. Liang, 2012b: Atmospheric impacts on climatic variability of surface incident solar radiation. Atmospheric Chemistry and Physics, 12, 9581–9592, https://doi.org/10.5194/acp-12-9581-2012.
Wang, K. C., R. E. Dickinson, Q. Ma, J. A. Augustine, and M. Wild, 2013: Measurement methods affect the observed global dimming and brightening. J. Climate, 26, 4112–4120, https://doi.org/10.1175/JCLI-D-12-00482.1.
Wang, K. C., Q. Ma, X. Y. Wang, and M. Wild, 2014: Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett., 41, 4664–4668, https://doi.org/10.1002/2014GL060201.
Wang, K. C., Q. Ma, Z. J. Li, and J. K. Wang, 2015: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res.: Atmos., 120, 6500–6514, https://doi.org/10.1002/2015JD023420.
Wang, Q. Y., H. Zhang, S. Yang, Q. Chen, X. X. Zhou, G. Y. Shi, Y. M. Cheng, and M. Wild, 2021a: Potential driving factors on surface solar radiation trends over China in recent years. Remote Sensing, 13, 704, https://doi.org/10.3390/rs13040704.
Wang, Y. W., and Y. H. Yang, 2014: China’s dimming and brightening: Evidence, causes and hydrological implications. Annales Geophysicae, 32, 41–55, https://doi.org/10.5194/angeo-32-41-2014.
Wang, Y. W., and M. Wild, 2016: A new look at solar dimming and brightening in China. Geophys. Res. Lett., 43, 11777–11785, https://doi.org/10.1002/2016GL071009.
Wang, Y. W., and M. Wild, 2017: Causes of the sharp increase in the time series of surface solar radiation in China between 1990 and 1993. AIP Conference Proceedings, 1810, 090010, https://doi.org/10.1063/1.4975550.
Wang, Y. W., M. Wild, A. Sanchez-Lorenzo, and V. Manara, 2017: Urbanization effect on trends in sunshine duration in China. Annales Geophysicae, 35, 839–851, https://doi.org/10.5194/angeo-35-839-2017.
Wang, Y. W., J. Trentmann, W. P. Yuan, and M. Wild, 2018: Validation of CM SAF CLARA-A2 and SARAH-E surface solar radiation datasets over China. Remote Sensing, 10, 1977, https://doi.org/10.3390/rs10121977.
Wang, Y. W., J. Trentmann, U. Pfeifroth, W. P. Yuan, and M. Wild, 2019: Improvement of air pollution in China inferred from changes between satellite-based and measured surface solar radiation. Remote Sensing, 11, 2910, https://doi.org/10.3390/rs11242910.
Wang, Y. W., S. Yang, A. Sanchez-Lorenzo, W. P. Yuan, and M. Wild, 2020: A revisit of direct and diffuse solar radiation in China based on homogeneous surface observations: Climatology, trends, and their probable causes. J. Geophys. Res.: Atmos., 125, e2020JD032634, https://doi.org/10.1029/2020JD032634.
Wang, Y. W., J. H. Zhang, A. Sanchez-Lorenzo, K. Tanaka, J. Trentmann, W. P. Yuan, and M. Wild, 2021b: Hourly surface observations suggest stronger solar dimming and brightening at sunrise and sunset over China. Geophys. Res. Lett., 48, e2020GL091422, https://doi.org/10.1029/2020GL091422.
Wang, Y. W., and Coauthors, 2022: Observations and implications of diurnal climatology and trends in direct and diffuse solar radiation over China. J. Geophys. Res.: Atmos., 127, e2022JD036769, https://doi.org/10.1029/2022JD036769.
Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res.: Atmos., 114, D00D16, https://doi.org/10.1029/2008JD011470.
Wild, M., 2012: Enlightening global dimming and brightening. Bull. Amer. Meteor. Soc., 93, 27–37, https://doi.org/10.1175/BAMS-D-11-00074.1.
Wild, M., 2016: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIREs Climate Change, 7, 91–107, https://doi.org/10.1002/wcc.372.
Wild, M., and B. Liepert, 2010: The Earth radiation balance as driver of the global hydrological cycle. Environmental Research Letters, 5, 025203, https://doi.org/10.1088/1748-9326/5/2/025203.
Wild, M., and E. Schmucki, 2011: Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Climate Dyn., 37, 1671–1688, https://doi.org/10.1007/s00382-010-0939-3.
Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850, https://doi.org/10.1126/science.1103215.
Wild, M., A. Ohmura, and K. Makowski, 2007: Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34, L04702, https://doi.org/10.1029/2006GL028031.
Wild, M., A. Roesch, and C. Ammann, 2012: Global dimming and brightening – evidence and agricultural implications. CABI Reviews, 7, 1–7, https://doi.org/10.1079/PAVSNNR20127003.
Wild, M., S. Wacker, S. Yang, and A. Sanchez-Lorenzo, 2021: Evidence for clear-sky dimming and brightening in central Europe. Geophys. Res. Lett., 48, e2020GL092216, https://doi.org/10.1029/2020GL092216.
Wild, M., D. Folini, F. Henschel, N. Fischer, and B. Müller, 2015: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12–24, https://doi.org/10.1016/j.solener.2015.03.039.
Wohland, J., D. Brayshaw, H. Bloomfield, and M. Wild, 2020: European multidecadal solar variability badly captured in all centennial reanalyses except CERA20C. Environmental Research Letters, 15, 104021, https://doi.org/10.1088/1748-9326/aba7e6.
Xia, X., 2010a: A closer looking at dimming and brightening in China during 1961–2005. Annales Geophysicae, 28, 1121–1132, https://doi.org/10.5194/angeo-28-1121-2010.
Xia, X. G., 2010b: Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res.: Atmos., 115, D00K06, https://doi.org/10.1029/2009JD012879.
Yamasoe, M. A., N. M. É. Rosário, S. N. S. M. Almeida, and M. Wild, 2021: Fifty-six years of surface solar radiation and sunshine duration over São Paulo, Brazil: 1961–2016. Atmospheric Chemistry and Physics, 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021.
Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137, 43–55, https://doi.org/10.1016/j.agrformet.2006.02.001.
Yang, S., X. L. Wang, and M. Wild, 2018: Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Climate, 31, 4529–4541, https://doi.org/10.1175/JCLI-D-17-0891.1.
Yang, S., X. L. Wang, and M. Wild, 2019: Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Climate, 32, 5901–5913, https://doi.org/10.1175/JCLI-D-18-0666.1.
Yang, S., Z. J. Zhou, Y. Yu, and M. Wild, 2021: Cloud “shrinking ” and “optical thinning” in the “dimming” period and a subsequent recovery in the “brightening” period over China. Environmental Research Letters, 16, 034013, https://doi.org/10.1088/1748-9326/ABDF89.
Yang, S. Y., X. T. Zhang, J. W. Xu, C. J. Feng, S. K. Guan, Y. J. Yao, and K. Jia, 2022: Quantification of the urbanization impacts on solar dimming and brightening over China. Environmental Research Letters, 17, 084001, https://doi.org/10.1088/1748-9326/AC7E61.
Yang, X. Y., S. Asseng, M. T. F. Wong, Q. Yu, J. Li, and E. M. Liu, 2013: Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agricultural and Forest Meteorology, 182–183, 342–351, https://doi.org/10.1016/j.agrformet.2013.07.006.
Yuan, M. H., T. Leirvik, and M. Wild, 2021: Global trends in downward surface solar radiation from spatial interpolated ground observations during 1961–2019. J. Climate, 34, 9501–9521, https://doi.org/10.1175/JCLI-D-21-0165.1.
Zhang, T. P., P. W. Stackhouse, S. K. Gupta, S. J. Cox, and J. C. Mikovitz, 2017: Validating the new results from the next generation of the NASA GEWEX SRB against the BSRN, GEBA, WRDC as well as the PMEL data. Radiation Processes in the Atmosphere and Ocean, 1810, 090015, https://doi.org/10.1063/1.4975555.
Zhang, Y. L., and Coauthors, 2020: Radiation dimming and decreasing water clarity fuel underwater darkening in lakes. Science Bulletin, 65, 1675–1684, https://doi.org/10.1016/j.scib.2020.06.016.
Zhao, N., X. F. Zeng, and H. W. Sun, 2015: Impact of global dimming on reference evapotranspiration in Hai River basin, China. Proc. RSHS14 and ICGRHWE14, IAHS, Guangzhou, China, 287–292, https://doi.org/10.5194/piahs-368-287-2015.
Zhao, R. Z., K. C. Wang, G. C. Wu, and C. L. Zhou, 2021: Temperature annual cycle variations and responses to surface solar radiation in China between 1960 and 2016. International Journal of Climatology, 41, E2959–E2978, https://doi.org/10.1002/JOC.6895.
Zheng, B. Y., Y. T. Ma, B. G. Li, Y. Guo, and Q. Y. Deng, 2011: Assessment of the influence of global dimming on the photosynthetic production of rice based on three-dimensional modeling. Science China Earth Sciences, 54, 290–297, https://doi.org/10.1007/s11430-010-4097-6.
Zhou, C. L., K. C. Wang, and Q. Ma, 2017: Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China. J. Climate, 30, 7379–7398, https://doi.org/10.1175/JCLI-D-16-0903.1.
Zhou, Z. G., A. W. Lin, L. C. Wang, W. M. Qin, Y. Zhong, and L. J. He, 2020: Trends in downward surface shortwave radiation from multi-source data over China during 1984–2015. International Journal of Climatology, 40, 3467–3485, https://doi.org/10.1002/joc.6408.
Zhou, Z. G., and Coauthors, 2021: Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China. Science of the Total Environment, 784, 147214, https://doi.org/10.1016/j.scitotenv.2021.147214.
Acknowledgements
This solicited paper emerged from a presentation held by Martin Wild at the International Radiation Symposium (IRS 2024) taking place in Hangzhou in June 2024. We would like to thank Dr. Lei BI for the excellent organization of this conference. Global dimming and brightening research at ETH Zurich has been supported by a sequence of Swiss National Science Foundation Grants (Grant Nos. 200021_135395, 200020_159938, 200020_188601) and through funding from the Federal Office of Meteorology and Climatology MeteoSwiss within the framework of GCOS Switzerland in support of the Global Energy Balance Archive (GEBA) hosted at ETH Zurich.
Funding
Funding note: Open access funding provided by Swiss Federal Institute of Technology Zurich.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is a contribution to the special issue on the International Radiation Symposium (IRS) 2024.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wild, M., Wang, Y., Wang, K. et al. A Perspective on Global Dimming and Brightening Worldwide and in China. Adv. Atmos. Sci. (2025). https://doi.org/10.1007/s00376-025-4534-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00376-025-4534-2

