Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

A Perspective on Global Dimming and Brightening Worldwide and in China

  • Perspectives
  • Open access
  • Published: 15 April 2025
  • (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
A Perspective on Global Dimming and Brightening Worldwide and in China
Download PDF
  • Martin Wild1,
  • Yawen Wang2,
  • Kaicun Wang3 &
  • …
  • Su Yang4 
  • 493 Accesses

  • 101 Altmetric

  • 14 Mentions

  • Explore all metrics

Abstract

Worldwide radiation records suggest that the amount of sunlight received at the Earth’s surface (surface solar radiation, SSR) has not been stable over the years, but underwent significant decadal variations, popularly also known as “global dimming and brightening”. These variations have been particularly evident in China, where the SSR substantially declined from the 1960s to the 1990s (dimming), with indications for a trend reversal in the 2000s and a slight recovery (brightening) in recent years. This perspective/review paper will discuss recent updates and remaining challenges regarding our knowledge of the magnitudes, causes, and implications of these variations in SSR worldwide, with a particular emphasis on the developments in China.

Article PDF

Download to read the full article text

Similar content being viewed by others

Changes in atmospheric shortwave absorption as important driver of dimming and brightening

Article 03 February 2020

Solar Activity in the Past and Its Impacts on Climate

Chapter © 2023

Record high solar irradiance in Western Europe during first COVID-19 lockdown largely due to unusual weather

Article Open access 15 February 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Climate Change
  • Environmental History
  • Global South and STS
  • Solar Physics
  • Photovoltaics
  • Renewable Energy
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Allen, R. J., J. R. Norris, and M. Wild, 2013: Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J. Geophys. Res.: Atmos., 118, 6311–6336, https://doi.org/10.1002/jgrd.50426.

    Article  Google Scholar 

  • Antuña-Marrero, J. C., F. García, R. Estevan, B. Barja, and A. Sánchez-Lorenzo, 2019: Simultaneous dimming and brightening under all and clear sky at Camagüey, Cuba (1981–2010). Journal of Atmospheric and Solar-Terrestrial Physics, 190, 45–53, https://doi.org/10.1016/j.jastp.2019.05.004.

    Article  Google Scholar 

  • Aparicio, A. J. P., M. C. Gallego, M. Anton, and J. M. Vaquero, 2020: Relationship between solar activity and direct solar irradiance in Madrid (1910–1929). Atmospheric Research, 235, 104766, https://doi.org/10.1016/j.atmosres.2019.104766.

    Article  Google Scholar 

  • Augustine, J. A., and A. Capotondi, 2022: Forcing for multidecadal surface solar radiation trends over northern hemisphere continents. J. Geophys. Res.: Atmos., 127, e2021JD036342, https://doi.org/10.1029/2021JD036342.

    Article  Google Scholar 

  • Bergin, M. H., C. Ghoroi, D. Dixit, J. J. Schauer, and D. T. Shindell, 2017: Large reductions in solar energy production due to dust and particulate air pollution. Environmental Science & Technology Letters, 4, 339–344, https://doi.org/10.1021/acs.estlett.7b00197.

    Article  CAS  Google Scholar 

  • Che, H. Z., G. Y. Shi, X. Y. Zhang, R. Arimoto, J. Q. Zhao, L. Xu, B. Wang, and Z. H. Chen, 2005: Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett., 32, L06803, https://doi.org/10.1029/2004GL022322.

    Article  Google Scholar 

  • Chen, Q. X., C. L. Huang, Z. H. Ruan, M. Xu, H. X. Li, X. L. Han, S. K. Dong, and X. Yang, 2025: Accelerated surface brightening in China: The decisive role of reduced anthropogenic aerosol emissions. Atmos. Environ., 340, 120893, https://doi.org/10.1016/j.atmosenv.2024.120893.

    Article  CAS  Google Scholar 

  • Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2022: Internal variability of all-sky and clear-sky surface solar radiation on decadal timescales. J. Geophys. Res.: Atmos., 127, e2021JD036332, https://doi.org/10.1029/2021JD036332.

    Article  Google Scholar 

  • Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2023: Internal variability of the climate system mirrored in decadal-scale trends of surface solar radiation. J. Geophys. Res.: Atmos., 128, e2023JD038573, https://doi.org/10.1029/2023JD038573.

    Article  Google Scholar 

  • Chtirkova, B., D. Folini, L. F. Correa, and M. Wild, 2024: Shortwave radiative flux variability through the lens of the pacific decadal oscillation. J. Geophys. Res.: Atmos., 129, e2023JD040520, https://doi.org/10.1029/2023JD040520.

    Article  Google Scholar 

  • Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024a: Trends in observed surface solar radiation and their causes in Brazil in the first 2 decades of the 21st century. Atmospheric Chemistry and Physics, 24, 8797–8819, https://doi.org/10.5194/acp-24-8797-2024.

    Article  CAS  Google Scholar 

  • Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024b: From internal variability to aerosol effects: Physical mechanisms behind observed decadal trends in surface solar radiation in the western Pacific Ocean. J. Geophys. Res.: Atmos., 129, e2024JD041014, https://doi.org/10.1029/2024JD041014.

    Article  Google Scholar 

  • Correa, L. F., D. Folini, B. Chtirkova, and M. Wild, 2024c: Causes for decadal trends in surface solar radiation in the alpine region in the 1981–2020 period. J. Geophys. Res.: Atmos., 129, e2023JD039998, https://doi.org/10.1029/2023JD039998.

    Article  Google Scholar 

  • Dehghan, Z., M. Ebrahimpour, F. Fathian, and F. Zare, 2017: Trend assessment of sunshine duration, cloudiness, and reference evapotranspiration for exploring global dimming/brightening in Tehran. Modeling Earth Systems and Environment, 3, 6, https://doi.org/10.1007/s40808-017-0278-z.

    Article  Google Scholar 

  • Du, J. Z., K. C. Wang, J. K. Wang, and Q. Ma, 2017: Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003. Atmospheric Chemistry and Physics, 17, 4931–4944, https://doi.org/10.5194/acp-17-4931-2017.

    Article  CAS  Google Scholar 

  • Dwyer, J. G., J. R. Norris, and C. Ruckstuhl, 2010: Do climate models reproduce observed solar dimming and brightening over China and Japan. J. Geophys. Res.: Atmos., 115, D00K08, https://doi.org/10.1029/2009JD012945.

    Article  Google Scholar 

  • Fang, H. J., W. M. Qin, L. C. Wang, M. Zhang, and X. F. Yang, 2021: Solar brightening/dimming over China’s Mainland: Effects of atmospheric aerosols, anthropogenic emissions, and meteorological conditions. Remote Sensing, 13, 88, https://doi.org/10.3390/rs13010088.

    Article  Google Scholar 

  • Feng, F., and K. C. Wang, 2019a: Determining factors of monthly to decadal variability in surface solar radiation in China: Evidences from current reanalyses. J. Geophys. Res.: Atmos., 124, 9161–9182, https://doi.org/10.1029/2018JD030214.

    Article  Google Scholar 

  • Feng, F., and K. C. Wang, 2019b: Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China. International Journal of Climatology, 39, 1305–1318, https://doi.org/10.1002/joc.5881.

    Article  Google Scholar 

  • Folini, D., T. N. Dallafior, M. Z. Hakuba, and M. Wild, 2017: Trends of surface solar radiation in unforced CMIP5 simulations. J. Geophys. Res.: Atmos., 122, 469–484, https://doi.org/10.1002/2016JD025869.

    Article  Google Scholar 

  • Gan, C. M., J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei, 2014: Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks. Atmospheric Chemistry and Physics, 14, 1701–1715, https://doi.org/10.5194/acp-14-1701-2014.

    Article  Google Scholar 

  • Gedney, N., C. Huntingford, G. P. Weedon, N. Bellouin, O. Boucher, and P. M. Cox, 2014: Detection of solar dimming and brightening effects on Northern Hemisphere river flow. Nature Geoscience, 7, 796–800, https://doi.org/10.1038/ngeo2263.

    Article  CAS  Google Scholar 

  • Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    Article  Google Scholar 

  • Gilgen, H., M. Wild, and A. Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J. Climate, 11, 2042–2061, https://doi.org/10.1175/1520-0442(1998)011<2042:MATOSI>2.0.CO;2.

    Article  Google Scholar 

  • Gu, Y. Q., and Coauthors, 2017: The effects of global dimming on the wheat crop grown in the Yangtze Basin of China simulated by SUCROS_LL, a process-based model. Ecological Modelling, 350, 42–54, https://doi.org/10.1016/j.ecolmodel.2017.02.009.

    Article  Google Scholar 

  • Hansen, J., and Coauthors, 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435, https://doi.org/10.1126/science.1110252.

    Article  CAS  Google Scholar 

  • Hatzianastassiou, N., and Coauthors, 2020: Global dimming and brightening features during the first decade of the 21st century. Atmosphere, 11, 308, https://doi.org/10.3390/atmos11030308.

    Article  Google Scholar 

  • He, Y. Y., K. C. Wang, C. Zhou, and M. Wild, 2018: A revisit of global dimming and brightening based on the sunshine duration. Geophys. Res. Lett., 45, 4281–4289, https://doi.org/10.1029/2018GL077424.

    Article  Google Scholar 

  • He, Y. Y., K. C. Wang, and F. Feng, 2021: Improvement of ERA5 over ERA-Interim in simulating surface incident solar radiation throughout China. J. Climate, 34, 3853–3867, https://doi.org/10.1175/JCLI-D-20-0300.1.

    Article  Google Scholar 

  • He, Y. Y., K. Yang, M. Wild, K. C. Wang, D. Tong, C. K. Shao, and T. J. Zhou, 2023: Constrained future brightening of solar radiation and its implication for China’s solar power. National Science Review, 10, nwac242, https://doi.org/10.1093/nsr/nwac242.

    Article  CAS  Google Scholar 

  • Huss, M., M. Funk, and A. Ohmura, 2009: Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys. Res. Lett., 36, L23501, https://doi.org/10.1029/2009GL040789.

    Article  Google Scholar 

  • Imamovic, A., K. Tanaka, D. Folini, and M. Wild, 2016: Global dimming and urbanization: Did stronger negative SSR trends collocate with regions of population growth. Atmospheric Chemistry and Physics, 16, 2719–2725, https://doi.org/10.5194/acp-16-2719-2016.

    Article  CAS  Google Scholar 

  • Jiao, B. Y., Y. C. Su, Q. X. Li, V. Manara, and M. Wild, 2023: An integrated and homogenized global surface solar radiation dataset and its reconstruction based on a convolutional neural network approach. Earth System Science Data, 15, 4519–4535, https://doi.org/10.5194/essd-15-4519-2023.

    Article  Google Scholar 

  • Jiao, B. Y., Y. C. Su, Z. C. Li, L. S. Liao, Q. X. Li, and M. Wild, 2024: An effort to distinguish the effects of cloud cover and aerosols on the decadal variations of surface solar radiation in the Northern Hemisphere. Environmental Research Letters, 19, 074012, https://doi.org/10.1088/1748-9326/AD5371.

    Article  Google Scholar 

  • Julsrud, I. R., T. Storelvmo, M. Schulz, K. O. Moseid, and M. Wild, 2022: Disentangling aerosol and cloud effects on dimming and brightening in observations and CMIP6. J. Geophys. Res.: Atmos., 127, e2021JD035476, https://doi.org/10.1029/2021JD035476.

    Article  Google Scholar 

  • Kaiser, D. P., and Y. Qian, 2002: Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution. Geophys. Res. Lett., 29, 2042, https://doi.org/10.1029/2002GL016057.

    Article  Google Scholar 

  • Kato, S., and Coauthors, 2018: Surface irradiances of edition 4.0 clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Climate, 31, 4501–4527, https://doi.org/10.1175/JCLI-D-17-0523.1.

    Article  Google Scholar 

  • Klimont, Z., S. J. Smith, and J. Cofala, 2013: The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environmental Research Letters, 8, 014003, https://doi.org/10.1088/1748-9326/8/1/014003.

    Article  CAS  Google Scholar 

  • Li, J., Y. W. Jiang, X. G. Xia, and Y. Y. Hu, 2018: Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environmental Research Letters, 13, 034006, https://doi.org/10.1088/1748-9326/aaa35a.

    Article  Google Scholar 

  • Li, J. X., W. Z. Ma, S. Yang, G. Liu, S. Y. Chen, and M. H. Ding, 2022: Northern dimming and southern brightening in eastern China during the first decade of the 21st century. Frontiers in Environmental Science, 10, 1003526, https://doi.org/10.3389/fenvs.2022.1003526.

    Article  Google Scholar 

  • Li, M., and Coauthors, 2017a: Anthropogenic emission inventories in China: A review. National Science Review, 4, 834–866, https://doi.org/10.1093/nsr/nwx150.

    Article  CAS  Google Scholar 

  • Li, X. Q., Q. X. Li, M. Wild, and P. Jones, 2024: An intensification of surface Earth’s energy imbalance since the late 20th century. Communications Earth & Environment, 5, 644, https://doi.org/10.1038/s43247-024-01802-z.

    Article  Google Scholar 

  • Li, X. Y., F. Wagner, W. Peng, J. N. Yang, and D. L. Mauzerall, 2017b: Reduction of solar photovoltaic resources due to air pollution in China. Proceedings of the National Academy of Sciences of the United States of America, 114, 11867–11872, https://doi.org/10.1073/pnas.1711462114.

    Article  CAS  Google Scholar 

  • Liang, F., and X. A. Xia, 2005: Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Annales Geophysicae, 23, 2425–2432, https://doi.org/10.5194/angeo-23-2425-2005.

    Article  Google Scholar 

  • Liepert, B. G., P. Fabian, and H. Grassl, 1994: Solar radiation in Germany-observed trends and an assessment of their causes; Part I: Regional approach. Beitraege zur Physik der Atmosphaere, 67, 15–29.

    Google Scholar 

  • Liu, B. H., M. Xu, M. Henderson, and W. G. Gong, 2004a: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res.: Atmos., 109, D15102, https://doi.org/10.1029/2004JD004511.

    Google Scholar 

  • Liu, B. H., M. Xu, M. Henderson, Y. Qi, and Y. Q. Li, 2004b: Taking China’s temperature: Daily range, warming trends, and regional variations, 1955–2000. J. Climate, 17, 4453–4462, https://doi.org/10.1175/3230.1.

    Article  Google Scholar 

  • Liu, M. Q., X. H. Fan, X. A. Xia, J. Q. Zhang, and J. Li, 2023: Value-added products derived from 15 years of high-quality surface solar radiation measurements at Xianghe, a suburban site in the North China Plain. Adv. Atmos. Sci., 40, 1132–1141, https://doi.org/10.1007/s00376-022-2205-0.

    Article  Google Scholar 

  • Liu, Z. J., X. G. Yang, X. M. Lin, Z. T. Zhang, S. Sun, and Q. Ye, 2021: From dimming to brightening during 1961 to 2014 in the maize growing season of China. Food and Energy Security, 10, 329–340, https://doi.org/10.1002/fes3.275.

    Article  Google Scholar 

  • Loeb, N. G., T. J. Thorsen, J. R. Norris, H. L. Wang, and W. Y. Su, 2018: Changes in earth’s energy budget during and after the “Pause” in global warming: An observational perspective. Climate, 6, 62, https://doi.org/10.3390/cli6030062.

    Article  Google Scholar 

  • Lu, N., L. Yao, J. Qin, K. Yang, M. Wild, and H. Jiang, 2022: High emission scenario substantially damages China’s photovoltaic potential. Geophys. Res. Lett., 49, e2022GL100068, https://doi.org/10.1029/2022GL100068.

    Article  Google Scholar 

  • Ma, Q., K. C. Wang, Y. Y. He, L. Y. Su, Q. Z. Wu, H. Liu, and Y. R. Zhang, 2022: Homogenized century-long surface incident solar radiation over Japan. Earth System Science Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022.

    Article  Google Scholar 

  • Manara, V., M. Brunetti, A. Celozzi, M. Maugeri, A. Sanchez-Lorenzo, and M. Wild, 2016: Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013). Atmospheric Chemistry and Physics, 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016.

    Article  CAS  Google Scholar 

  • Manara, V., M. Brunetti, M. Maugeri, A. Sanchez-Lorenzo, and M. Wild, 2017: Sunshine duration and global radiation trends in Italy (1959–2013): To what extent do they agree. J. Geophys. Res.: Atmos., 122, 4312–4331, https://doi.org/10.1002/2016JD026374.

    Article  Google Scholar 

  • Meng, Q. F., B. H. Liu, H. S. Yang, and X. P. Chen, 2020: Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security, 9, e235, https://doi.org/10.1002/fes3.235.

    Article  Google Scholar 

  • Mercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox, 2009: Impact of changes in diffuse radiation on the global land carbon sink. Nature, 458, 1014–1017, https://doi.org/10.1038/nature07949.

    Article  CAS  Google Scholar 

  • Montero-Martín, J., M. Antón, J. M. Vaquero, R. Román, J. Vaquero-Martinez, A. J. P. Aparicio, and A. Sanchez-Lorenzo, 2023: Reconstruction of daily global solar radiation under all-sky and cloud-free conditions in Badajoz (Spain) since 1929. International Journal of Climatology, 43, 3523–3537, https://doi.org/10.1002/joc.8042.

    Article  Google Scholar 

  • Moseid, K. O., and Coauthors, 2020: Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 20, 16023–16040, https://doi.org/10.5194/acp-20-16023-2020.

    Article  CAS  Google Scholar 

  • Müller, B., M. Wild, A. Driesse, and K. Behrens, 2014: Rethinking solar resource assessments in the context of global dimming and brightening. Solar Energy, 99, 272–282, https://doi.org/10.1016/j.solener.2013.11.013.

    Article  Google Scholar 

  • Ohmura, A., H. Lang, J. Lenoble, and J. Geleyn, 1989: Secular variation of global radiation in Europe. Current Problems in Atmospheric Radiation, J. Leonoble, and J. F. Geleyn, Eds., Deepack Publ., 298–231.

    Google Scholar 

  • Oikonomakis, E., S. Aksoyoglu, M. Wild, G. Ciarelli, U. Baltensperger, and A. S. H. Prévôt, 2018: Solar “brightening” impact on summer surface ozone between 1990 and 2010 in Europe - a model sensitivity study of the influence of the aerosol-radiation interactions. Atmospheric Chemistry and Physics, 18, 9741–9765, https://doi.org/10.5194/acp-18-9741-2018.

    Article  CAS  Google Scholar 

  • Pfeifroth, U., A. Sanchez-Lorenzo, V. Manara, J. Trentmann, and R. Hollmann, 2018: Trends and variability of surface solar radiation in europe based on surface- and satellite-based data records. J. Geophys. Res.: Atmos., 123, 1735–1754, https://doi.org/10.1002/2017JD027418.

    Article  Google Scholar 

  • Qian, Y., W. G. Wang, L. R. Leung, and D. P. Kaiser, 2007: Variability of solar radiation under cloud-free skies in China: The role of aerosols. Geophys. Res. Lett., 34, L12804, https://doi.org/10.1029/2006GL028800.

    Article  Google Scholar 

  • Salman, D. M., 2014: What are the hidden global food crises that challenge future development. International Journal of Development and Sustainability, 3, 20–37.

    Google Scholar 

  • Sanchez-Lorenzo, A., M. Wild, M. Brunetti, J. A. Guijarro, M. Z. Hakuba, J. Calbó, S. Mystakidis, and B. Bartok, 2015: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res.: Atmos., 120, 9555–9569, https://doi.org/10.1002/2015JD023321.

    Article  Google Scholar 

  • Sanchez-Lorenzo, A., A. Enriquez-Alonso, M. Wild, J. Trentmann, S. M. Vicente-Serrano, A. Sanchez-Romero, R. Posselt, and M. Z. Hakuba, 2017: Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010. Remote Sens. Environ., 189, 108–117, https://doi.org/10.1016/j.rse.2016.11.018.

    Article  Google Scholar 

  • Schumacher, D. L., J. Singh, M. Hauser, E. M. Fischer, M. Wild, and S. I. Seneviratne, 2024: Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Communications Earth & Environment, 5, 182, https://doi.org/10.1038/s43247-024-01332-8.

    Article  Google Scholar 

  • Schwarz, M., D. Folini, S. Yang, R. P. Allan, and M. Wild, 2020: Changes in atmospheric shortwave absorption as important driver of dimming and brightening. Nature Geoscience, 13, 110–115, https://doi.org/10.1038/s41561-019-0528-y.

    Article  CAS  Google Scholar 

  • Shi, G. Y., T. Hayasaka, A. Ohmura, Z. H. Chen, B. Wang, J. Q. Zhao, H. Z. Che, and L. Xu, 2008: Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteor. Climatol., 47, 1006–1016, https://doi.org/10.1175/2007JAMC1493.1.

    Article  Google Scholar 

  • Shi, H. R., and Coauthors, 2021: Surface brightening in eastern and central China since the implementation of the clean air action in 2013: Causes and implications. Geophys. Res. Lett., 48, e2020GL091105, https://doi.org/10.1029/2020GL091105.

    Article  Google Scholar 

  • Song, Z., S. L. Cao, and H. X. Yang, 2023: Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches. Applied Energy, 339, 121005, https://doi.org/10.1016/j.apenergy.2023.121005.

    Article  Google Scholar 

  • Soni, P., R. Srivastava, and S. Tripathi, 2019: Implication of data uncertainty in the detection of surface radiation trends and observational evidence of renewed solar dimming over India. Theor. Appl. Climatol., 137, 2663–2680, https://doi.org/10.1007/s00704-018-2743-7.

    Article  Google Scholar 

  • Soni, V. K., G. Pandithurai, and D. S. Pai, 2016: Is there a transition of solar radiation from dimming to brightening over India. Atmospheric Research, 169, 209–224, https://doi.org/10.1016/j.atmosres.2015.10.010.

    Article  Google Scholar 

  • Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2022: Interdecadal changes of the MERRA-2 incoming surface solar radiation (SSR) and evaluation against GEBA & BSRN stations. Applied Sciences, 12, 10176, https://doi.org/10.3390/app121910176.

    Article  CAS  Google Scholar 

  • Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2023: An assessment of global dimming and brightening during 1984–2018 using the FORTH radiative transfer model and ISCCP satellite and MERRA-2 reanalysis data. Atmosphere, 14, 1258, https://doi.org/10.3390/atmos14081258.

    Article  Google Scholar 

  • Stamatis, M., N. Hatzianastassiou, M. B. Korras-Carraca, C. Matsoukas, M. Wild, and I. Vardavas, 2024: How strong are the links between global warming and surface solar radiation changes. Climatic Change, 177, 156, https://doi.org/10.1007/s10584-024-03810-6.

    Article  Google Scholar 

  • Stanhill, G., and S. Moreshet, 1992: Global radiation climate changes: The world network. Climatic Change, 21, 57–75, https://doi.org/10.1007/BF00143253.

    Article  Google Scholar 

  • Stanhill, G., and S. Cohen, 2001: Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 107, 255–278, https://doi.org/10.1016/S0168-1923(00)00241-0.

    Article  Google Scholar 

  • Storelvmo, T., U. K. Heede, T. Leirvik, P. C. B. Phillips, P. Arndt, and M. Wild, 2018: Lethargic response to aerosol emissions in current climate models. Geophys. Res. Lett., 45, 9814–9823, https://doi.org/10.1029/2018GL078298.

    Article  Google Scholar 

  • Streets, D. G., and Coauthors, 2009: Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J. Geophys. Res.: Atmos., 114, D00D18, https://doi.org/10.1029/2008JD011624.

    Article  Google Scholar 

  • Suraqui, S., H. Tabor, W. H. Klein, and B. Goldberg, 1974: Solar radiation changes at Mt. St. Katherine after forty years. Solar Energy, 16, 155–158, https://doi.org/10.1016/0038-092X(74)90012-7.

    Article  Google Scholar 

  • Sweerts, B., S. Pfenninger, S. Yang, D. Folini, B. van der Zwaan, and M. Wild, 2019: Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nature Energy, 4, 657–663, https://doi.org/10.1038/s41560-019-0412-4.

    Article  Google Scholar 

  • Tanaka, K., A. Ohmura, D. Folini, M. Wild, and N. Ohkawara, 2016: Is global dimming and brightening in Japan limited to urban areas? Atmospheric Chemistry and Physics, 16, 13969–14001, https://doi.org/10.5194/acp-16-13969-2016.

    Article  CAS  Google Scholar 

  • Tang, W. J., K. Yang, J. Qin, C. C. K. Cheng, and J. He, 2011: Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmospheric Chemistry and Physics, 11, 393–406, https://doi.org/10.5194/acp-11-393-2011.

    Article  CAS  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.

    Article  Google Scholar 

  • Wang, K., H. Ye, F. Chen, Y. Z. Xiong, and C. P. Wang, 2012a: Urbanization effect on the diurnal temperature range: Different roles under solar dimming and brightening. J. Climate, 25, 1022–1027, https://doi.org/10.1175/JCLI-D-10-05030.1.

    Article  Google Scholar 

  • Wang, K. C., 2014: Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation. Scientific Reports, 4, 6144, https://doi.org/10.1038/srep06144.

    Article  CAS  Google Scholar 

  • Wang, K. C., and R. E. Dickinson, 2013: Contribution of solar radiation to decadal temperature variability over land. Proceedings of the National Academy of Sciences of the United States of America, 110, 14877–14882, https://doi.org/10.1073/pnas.1311433110.

    Article  CAS  Google Scholar 

  • Wang, K. C., R. E. Dickinson, and S. L. Liang, 2009: Clear sky visibility has decreased over land globally from 1973 to 2007. Science, 323, 1468–1470, https://doi.org/10.1126/science.1167549.

    Article  CAS  Google Scholar 

  • Wang, K. C., R. E. Dickinson, M. Wild, and S. L. Liang, 2010: Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J. Geophys. Res.: Atmos., 115, D20113, https://doi.org/10.1029/2010JD013847.

    Google Scholar 

  • Wang, K. C., R. E. Dickinson, M. Wild, and S. Liang, 2012b: Atmospheric impacts on climatic variability of surface incident solar radiation. Atmospheric Chemistry and Physics, 12, 9581–9592, https://doi.org/10.5194/acp-12-9581-2012.

    Article  CAS  Google Scholar 

  • Wang, K. C., R. E. Dickinson, Q. Ma, J. A. Augustine, and M. Wild, 2013: Measurement methods affect the observed global dimming and brightening. J. Climate, 26, 4112–4120, https://doi.org/10.1175/JCLI-D-12-00482.1.

    Article  Google Scholar 

  • Wang, K. C., Q. Ma, X. Y. Wang, and M. Wild, 2014: Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett., 41, 4664–4668, https://doi.org/10.1002/2014GL060201.

    Article  Google Scholar 

  • Wang, K. C., Q. Ma, Z. J. Li, and J. K. Wang, 2015: Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res.: Atmos., 120, 6500–6514, https://doi.org/10.1002/2015JD023420.

    Article  Google Scholar 

  • Wang, Q. Y., H. Zhang, S. Yang, Q. Chen, X. X. Zhou, G. Y. Shi, Y. M. Cheng, and M. Wild, 2021a: Potential driving factors on surface solar radiation trends over China in recent years. Remote Sensing, 13, 704, https://doi.org/10.3390/rs13040704.

    Article  Google Scholar 

  • Wang, Y. W., and Y. H. Yang, 2014: China’s dimming and brightening: Evidence, causes and hydrological implications. Annales Geophysicae, 32, 41–55, https://doi.org/10.5194/angeo-32-41-2014.

    Article  CAS  Google Scholar 

  • Wang, Y. W., and M. Wild, 2016: A new look at solar dimming and brightening in China. Geophys. Res. Lett., 43, 11777–11785, https://doi.org/10.1002/2016GL071009.

    Article  Google Scholar 

  • Wang, Y. W., and M. Wild, 2017: Causes of the sharp increase in the time series of surface solar radiation in China between 1990 and 1993. AIP Conference Proceedings, 1810, 090010, https://doi.org/10.1063/1.4975550.

    Article  Google Scholar 

  • Wang, Y. W., M. Wild, A. Sanchez-Lorenzo, and V. Manara, 2017: Urbanization effect on trends in sunshine duration in China. Annales Geophysicae, 35, 839–851, https://doi.org/10.5194/angeo-35-839-2017.

    Article  CAS  Google Scholar 

  • Wang, Y. W., J. Trentmann, W. P. Yuan, and M. Wild, 2018: Validation of CM SAF CLARA-A2 and SARAH-E surface solar radiation datasets over China. Remote Sensing, 10, 1977, https://doi.org/10.3390/rs10121977.

    Article  CAS  Google Scholar 

  • Wang, Y. W., J. Trentmann, U. Pfeifroth, W. P. Yuan, and M. Wild, 2019: Improvement of air pollution in China inferred from changes between satellite-based and measured surface solar radiation. Remote Sensing, 11, 2910, https://doi.org/10.3390/rs11242910.

    Article  Google Scholar 

  • Wang, Y. W., S. Yang, A. Sanchez-Lorenzo, W. P. Yuan, and M. Wild, 2020: A revisit of direct and diffuse solar radiation in China based on homogeneous surface observations: Climatology, trends, and their probable causes. J. Geophys. Res.: Atmos., 125, e2020JD032634, https://doi.org/10.1029/2020JD032634.

    Article  Google Scholar 

  • Wang, Y. W., J. H. Zhang, A. Sanchez-Lorenzo, K. Tanaka, J. Trentmann, W. P. Yuan, and M. Wild, 2021b: Hourly surface observations suggest stronger solar dimming and brightening at sunrise and sunset over China. Geophys. Res. Lett., 48, e2020GL091422, https://doi.org/10.1029/2020GL091422.

    Article  Google Scholar 

  • Wang, Y. W., and Coauthors, 2022: Observations and implications of diurnal climatology and trends in direct and diffuse solar radiation over China. J. Geophys. Res.: Atmos., 127, e2022JD036769, https://doi.org/10.1029/2022JD036769.

    Article  Google Scholar 

  • Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res.: Atmos., 114, D00D16, https://doi.org/10.1029/2008JD011470.

    Google Scholar 

  • Wild, M., 2012: Enlightening global dimming and brightening. Bull. Amer. Meteor. Soc., 93, 27–37, https://doi.org/10.1175/BAMS-D-11-00074.1.

    Article  Google Scholar 

  • Wild, M., 2016: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIREs Climate Change, 7, 91–107, https://doi.org/10.1002/wcc.372.

    Article  Google Scholar 

  • Wild, M., and B. Liepert, 2010: The Earth radiation balance as driver of the global hydrological cycle. Environmental Research Letters, 5, 025203, https://doi.org/10.1088/1748-9326/5/2/025203.

    Article  Google Scholar 

  • Wild, M., and E. Schmucki, 2011: Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Climate Dyn., 37, 1671–1688, https://doi.org/10.1007/s00382-010-0939-3.

    Article  Google Scholar 

  • Wild, M., and Coauthors, 2005: From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science, 308, 847–850, https://doi.org/10.1126/science.1103215.

    Article  CAS  Google Scholar 

  • Wild, M., A. Ohmura, and K. Makowski, 2007: Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34, L04702, https://doi.org/10.1029/2006GL028031.

    Article  Google Scholar 

  • Wild, M., A. Roesch, and C. Ammann, 2012: Global dimming and brightening – evidence and agricultural implications. CABI Reviews, 7, 1–7, https://doi.org/10.1079/PAVSNNR20127003.

    Article  Google Scholar 

  • Wild, M., S. Wacker, S. Yang, and A. Sanchez-Lorenzo, 2021: Evidence for clear-sky dimming and brightening in central Europe. Geophys. Res. Lett., 48, e2020GL092216, https://doi.org/10.1029/2020GL092216.

    Article  Google Scholar 

  • Wild, M., D. Folini, F. Henschel, N. Fischer, and B. Müller, 2015: Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Solar Energy, 116, 12–24, https://doi.org/10.1016/j.solener.2015.03.039.

    Article  Google Scholar 

  • Wohland, J., D. Brayshaw, H. Bloomfield, and M. Wild, 2020: European multidecadal solar variability badly captured in all centennial reanalyses except CERA20C. Environmental Research Letters, 15, 104021, https://doi.org/10.1088/1748-9326/aba7e6.

    Article  Google Scholar 

  • Xia, X., 2010a: A closer looking at dimming and brightening in China during 1961–2005. Annales Geophysicae, 28, 1121–1132, https://doi.org/10.5194/angeo-28-1121-2010.

    Article  Google Scholar 

  • Xia, X. G., 2010b: Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res.: Atmos., 115, D00K06, https://doi.org/10.1029/2009JD012879.

    Article  Google Scholar 

  • Yamasoe, M. A., N. M. É. Rosário, S. N. S. M. Almeida, and M. Wild, 2021: Fifty-six years of surface solar radiation and sunshine duration over São Paulo, Brazil: 1961–2016. Atmospheric Chemistry and Physics, 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021.

    Article  CAS  Google Scholar 

  • Yang, K., T. Koike, and B. S. Ye, 2006: Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137, 43–55, https://doi.org/10.1016/j.agrformet.2006.02.001.

    Article  Google Scholar 

  • Yang, S., X. L. Wang, and M. Wild, 2018: Homogenization and trend analysis of the 1958–2016 in situ surface solar radiation records in China. J. Climate, 31, 4529–4541, https://doi.org/10.1175/JCLI-D-17-0891.1.

    Article  Google Scholar 

  • Yang, S., X. L. Wang, and M. Wild, 2019: Causes of dimming and brightening in China inferred from homogenized daily clear-sky and all-sky in situ surface solar radiation records (1958–2016). J. Climate, 32, 5901–5913, https://doi.org/10.1175/JCLI-D-18-0666.1.

    Article  Google Scholar 

  • Yang, S., Z. J. Zhou, Y. Yu, and M. Wild, 2021: Cloud “shrinking ” and “optical thinning” in the “dimming” period and a subsequent recovery in the “brightening” period over China. Environmental Research Letters, 16, 034013, https://doi.org/10.1088/1748-9326/ABDF89.

    Google Scholar 

  • Yang, S. Y., X. T. Zhang, J. W. Xu, C. J. Feng, S. K. Guan, Y. J. Yao, and K. Jia, 2022: Quantification of the urbanization impacts on solar dimming and brightening over China. Environmental Research Letters, 17, 084001, https://doi.org/10.1088/1748-9326/AC7E61.

    Article  Google Scholar 

  • Yang, X. Y., S. Asseng, M. T. F. Wong, Q. Yu, J. Li, and E. M. Liu, 2013: Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agricultural and Forest Meteorology, 182–183, 342–351, https://doi.org/10.1016/j.agrformet.2013.07.006.

    Article  Google Scholar 

  • Yuan, M. H., T. Leirvik, and M. Wild, 2021: Global trends in downward surface solar radiation from spatial interpolated ground observations during 1961–2019. J. Climate, 34, 9501–9521, https://doi.org/10.1175/JCLI-D-21-0165.1.

    Google Scholar 

  • Zhang, T. P., P. W. Stackhouse, S. K. Gupta, S. J. Cox, and J. C. Mikovitz, 2017: Validating the new results from the next generation of the NASA GEWEX SRB against the BSRN, GEBA, WRDC as well as the PMEL data. Radiation Processes in the Atmosphere and Ocean, 1810, 090015, https://doi.org/10.1063/1.4975555.

    Google Scholar 

  • Zhang, Y. L., and Coauthors, 2020: Radiation dimming and decreasing water clarity fuel underwater darkening in lakes. Science Bulletin, 65, 1675–1684, https://doi.org/10.1016/j.scib.2020.06.016.

    Article  CAS  Google Scholar 

  • Zhao, N., X. F. Zeng, and H. W. Sun, 2015: Impact of global dimming on reference evapotranspiration in Hai River basin, China. Proc. RSHS14 and ICGRHWE14, IAHS, Guangzhou, China, 287–292, https://doi.org/10.5194/piahs-368-287-2015.

    Google Scholar 

  • Zhao, R. Z., K. C. Wang, G. C. Wu, and C. L. Zhou, 2021: Temperature annual cycle variations and responses to surface solar radiation in China between 1960 and 2016. International Journal of Climatology, 41, E2959–E2978, https://doi.org/10.1002/JOC.6895.

    Article  Google Scholar 

  • Zheng, B. Y., Y. T. Ma, B. G. Li, Y. Guo, and Q. Y. Deng, 2011: Assessment of the influence of global dimming on the photosynthetic production of rice based on three-dimensional modeling. Science China Earth Sciences, 54, 290–297, https://doi.org/10.1007/s11430-010-4097-6.

    Article  CAS  Google Scholar 

  • Zhou, C. L., K. C. Wang, and Q. Ma, 2017: Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China. J. Climate, 30, 7379–7398, https://doi.org/10.1175/JCLI-D-16-0903.1.

    Article  Google Scholar 

  • Zhou, Z. G., A. W. Lin, L. C. Wang, W. M. Qin, Y. Zhong, and L. J. He, 2020: Trends in downward surface shortwave radiation from multi-source data over China during 1984–2015. International Journal of Climatology, 40, 3467–3485, https://doi.org/10.1002/joc.6408.

    Article  Google Scholar 

  • Zhou, Z. G., and Coauthors, 2021: Estimation of the losses in potential concentrated solar thermal power electricity production due to air pollution in China. Science of the Total Environment, 784, 147214, https://doi.org/10.1016/j.scitotenv.2021.147214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This solicited paper emerged from a presentation held by Martin Wild at the International Radiation Symposium (IRS 2024) taking place in Hangzhou in June 2024. We would like to thank Dr. Lei BI for the excellent organization of this conference. Global dimming and brightening research at ETH Zurich has been supported by a sequence of Swiss National Science Foundation Grants (Grant Nos. 200021_135395, 200020_159938, 200020_188601) and through funding from the Federal Office of Meteorology and Climatology MeteoSwiss within the framework of GCOS Switzerland in support of the Global Energy Balance Archive (GEBA) hosted at ETH Zurich.

Funding

Funding note: Open access funding provided by Swiss Federal Institute of Technology Zurich.

Author information

Authors and Affiliations

  1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

    Martin Wild

  2. Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

    Yawen Wang

  3. Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China

    Kaicun Wang

  4. National Meteorological Information Centre, China Meteorological Administration, Beijing, China

    Su Yang

Authors
  1. Martin Wild
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Yawen Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Kaicun Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Su Yang
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Martin Wild.

Additional information

This paper is a contribution to the special issue on the International Radiation Symposium (IRS) 2024.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wild, M., Wang, Y., Wang, K. et al. A Perspective on Global Dimming and Brightening Worldwide and in China. Adv. Atmos. Sci. (2025). https://doi.org/10.1007/s00376-025-4534-2

Download citation

  • Received: 17 December 2024

  • Revised: 06 February 2025

  • Accepted: 18 February 2025

  • Published: 15 April 2025

  • DOI: https://doi.org/10.1007/s00376-025-4534-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • global dimming and brightening
  • surface solar radiation
  • aerosols
  • air pollution
  • climate change
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

The International Radiation Symposium (IRS) 2024

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature