Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Energy Meteorology for the Evaluation of Solar Farm Thermal Impacts on Desert Habitats

  • Original Paper
  • Open access
  • Published: 28 December 2024
  • Volume 42, pages 313–326, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Energy Meteorology for the Evaluation of Solar Farm Thermal Impacts on Desert Habitats
Download PDF
  • Carlos F. M. Coimbra1 
  • 2588 Accesses

  • 57 Altmetric

  • 10 Mentions

  • Explore all metrics

Abstract

This work addresses challenges and opportunities in the evaluation of solar power plant impacts, with a particular focus on thermal effects of solar plants on the environment and vice-versa. Large-scale solar power plants are often sited in arid or desert habitats, which tend to include fauna and flora that are highly sensitive to changes in temperature and humidity. Our understanding of both shortwave (solar) and longwave (terrestrial) radiation processes in solar power plants is complete enough to render the modeling of radiation fluxes with high confidence for most applications. In contrast to radiation, the convective environment in large-scale solar power plants is much more difficult to characterize. Wind direction, wind speed, turbulence intensity, dust concentration, ground condition, panel configuration density, orientation and distribution throughout the solar field, all affect the local environment, the balance between radiation and convection, and in turn, the performance and thermal impact of solar power plants. Because the temperatures of the two sides of photovoltaic (PV) panels depend on detailed convection–radiation balances, the uncertainty associated with convection affects the heat and mass transfer balances as well. Those balances are critically important in estimating the thermal impact of large-scale solar farms on local habitats. Here we discuss outstanding issues related with these transfer processes for utility-scale solar generation and highlight potential pathways to gain useful knowledge about the convective environment directly from solar farms under operating conditions.

摘要

本项工作涉及太阳能发电厂影响评估方面的挑战和机遇, 特别侧重于太阳能发电厂对环境的热效应以及环境对电站的反作用. 大型太阳能发电厂通常位于干旱或沙漠地区, 这些地区的动植物对温度和湿度变化高度敏感. 我们对太阳能发电厂中短波和长波辐射过程的了解已经非常全面, 足以使辐射通量的建模在大多数应用中具有很高的可信度. 然而, 与辐射相比, 大规模太阳能发电厂中的对流环境更难以描述. 风向、风速、湍流强度、沙尘浓度、地面状况、电池板配置密度、朝向以及在整个太阳能场的分布, 都会影响当地环境、辐射与对流之间的平衡, 进而影响太阳能电站的性能和热影响. 由于光伏电池板两侧的温度依赖于精细的对流-辐射平衡, 因此与对流相关的不确定性也会影响传热和传质平衡. 这些平衡对于估算大规模太阳能发电厂对当地生存环境的热影响至关重要. 本文讨论了这些传递过程在大型太阳能发电中的关键问题, 并强调了从实际运行的太阳能发电厂中直接获取对流环境有用信息的潜在途径.

Article PDF

Download to read the full article text

Similar content being viewed by others

In situ solar panel convective heat transfer study: methodology, limitations, and seasonal analysis

Article 10 March 2025

Solar PV Power Potential is Greatest Over Croplands

Article Open access 07 August 2019

Integration of wind flow effects in theoretical and experimental models for solar power generation

Article Open access 15 March 2025

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Environmental Impact
  • Environmental Physics
  • Solar Physics
  • Solar Thermal Energy
  • Renewable Energy
  • Thermophotovoltaics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Data sharing policy The models and data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Barron-Gafford, G. A., R. L. Minor, N. A. Allen, A. D. Cronin, A. E. Brooks, and M. A. Pavao-Zuckerman, 2016: The photovoltaic heat island effect: Larger solar power plants increase local temperatures. Scientific Reports, 6, 35070, https://doi.org/10.1038/srep35070.

    Article  CAS  Google Scholar 

  • Berdahl, P., 2021: Retrospective on the resource for radiative cooling. Journal of Photonics for Energy, 11, 042106, https://doi.org/10.1117/1.jpe.11.042106.

    Article  CAS  Google Scholar 

  • De Soto, W., S. A. Klein, and W. A. Beckman, 2006: Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80, 78–88, https://doi.org/10.1016/j.solener.2005.06.010.

    Article  CAS  Google Scholar 

  • Duffie, J. A., and W. A. Beckman, 2013: Solar Engineering of Thermal Processes. 4th ed. John Wiley & Sons.

    Book  Google Scholar 

  • Fan, C. X., and X. L. Huang, 2021: Direct impact of solar farm deployment on surface longwave radiation. Environmental Research Communications, 3, 125006, https://doi.org/10.1088/2515-7620/ac40f1.

    Article  Google Scholar 

  • Fathi, N. Y., and A. Samer, 2016: View factors of flat solar collectors array in flat, inclined, and step-like solar fields. Journal of Solar Energy Engineering, 138, 061005, https://doi.org/10.1115/1.4034549.

    Article  Google Scholar 

  • Gaglia, A. G., S. Lykoudis, A. A. Argiriou, C. A. Balaras, and E. Dialynas, 2017: Energy efficiency of PV panels under real out-door conditionse-An experimental assessment in Athens, Greece. Renewable Energy, 101, 236–243, https://doi.org/10.1016/j.renene.2016.08.051.

    Article  Google Scholar 

  • Gilman, P., 2015: SAM photovoltaic model technical reference. Techn. Rep. DE-AC36-08GO28308.

    Book  Google Scholar 

  • Hernandez, R. R., and Coauthors, 2014: Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766–779, https://doi.org/10.1016/j.rser.2013.08.041.

    Article  Google Scholar 

  • Hu, A. X., and Coauthors, 2016: Impact of solar panels on global climate. Nature Climate Change, 6, 290–294, https://doi.org/10.1038/nclimate2843.

    Article  Google Scholar 

  • Jones, A. D., and C. P. Underwood, 2001: A thermal model for photovoltaic systems. Solar Energy, 70, 349–359, https://doi.org/10.1016/S0038-092X(00)00149-3.

    Article  CAS  Google Scholar 

  • King, D. L., W. E. Boyson, and J. A. Kratochvil, 2004. Photovoltaic array performance model. Techn. Rep. SAND 2004-3535.

    Google Scholar 

  • Krauter, S., and R. Hanitsch, 1996: Actual optical and thermal performance of PV-modules. Solar Energy Materials and Solar Cells, 41–42, 557–574, https://doi.org/10.1016/0927-0248(95)00143-3.

    Article  Google Scholar 

  • Larson, D. P., M. Y. Li, and C. F. M. Coimbra, 2020: SCOPE: Spectral cloud optical property estimation using real-time GOES-R longwave imagery. Journal of Renewable and Sustainable Energy, 12, 026501, https://doi.org/10.1063/1.5144350.

    Article  Google Scholar 

  • Li, M. Y., and C. F. M. Coimbra, 2019: On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials. International Journal of Heat and Mass Transfer, 135, 1053–1062, https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.040.

    Article  Google Scholar 

  • Li, M. Y., Y. J. Jiang, and C. F. M. Coimbra, 2017: On the determination of atmospheric longwave irradiance under all-sky conditions. Solar Energy, 144, 40–48, https://doi.org/10.1016/j.solener.2017.01.006.

    Article  Google Scholar 

  • Li, M. Y., Z. Y. Liao, and C. F. M. Coimbra, 2018: Spectral model for clear sky atmospheric longwave radiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 209, 196–211, https://doi.org/10.1016/j.jqsrt.2018.01.029.

    Article  CAS  Google Scholar 

  • Li, M. Y., Z. Y. Liao, and C. F. M. Coimbra, 2020: Spectral solar irradiance on inclined surfaces: A fast Monte Carlo approach. Journal of Renewable and Sustainable Energy, 12, 053705, https://doi.org/10.1063/5.0011635.

    Article  Google Scholar 

  • Martin, M., and P. Berdahl, 1984: Summary of results from the spectral and angular sky radiation measurement program. Solar Energy, 33, 241–252, https://doi.org/10.1016/0038-092X(84)90155-5.

    Article  Google Scholar 

  • Masson, V., M. Bonhomme, J. L. Salagnac, X. Briottet, and A. Lemonsu, 2014: Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2, 14, https://doi.org/10.3389/fenvs.2014.00014.

    Article  Google Scholar 

  • Matsunobu, L. M., and C. F. M. Coimbra, 2024: On effective spectral wideband models for clear sky atmospheric emissivity and transmissivity. J. Geophys. Res., 129, e2023JD039798, https://doi.org/10.1029/2023JD039798.

    Article  Google Scholar 

  • Mills, A. F., and C. F. M. Coimbra, 2015: Basic Heat and Mass Transfer. 3rd ed. Temporal Publishing.

    Google Scholar 

  • Millstein, D., and S. Menon, 2011: Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environmental Research Letters, 6, 034001, https://doi.org/10.1088/1748-9326/6/3/034001.

    Article  Google Scholar 

  • Nassar, Y. F., H. J. El-Khozondar, S. O. Belhaj, S. Y. Alsadi, and N. M. Abuhamoud, 2022: View factors in horizontal plane fixed-mode solar PV fields. Frontiers in Energy Research, 10, 859075, https://doi.org/10.3389/fenrg.2022.859075.

    Article  Google Scholar 

  • Nemet, G. F., 2009: Net radiative forcing from widespread deployment of photovoltaics. Environmental Science & Technology, 43, 2173–2178, https://doi.org/10.1021/es801747c.

    Article  CAS  Google Scholar 

  • Notton, G., C. Cristofari, N. Mattei, and P. Poggi, 2005: Modelling of a double-glass photovoltaic module using finite differences. Applied Thermal Engineering, 25, 2854–2877, https://doi.org/10.1016/j.applthermaleng.2005.02.008.

    Article  CAS  Google Scholar 

  • Perez, R., R. Seals, P. Ineichen, R. Stewart, and D. Menicucci, 1987: A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Solar Energy, 39, 221–231, https://doi.org/10.1016/S0038-092X(87)80031-2.

    Article  Google Scholar 

  • Shakespeare, C. J., and M. L. Roderick, 2021: The clear-sky down-welling long-wave radiation at the surface in current and future climates. Quart. J. Roy. Meteor. Soc., 147, 4251–4268, https://doi.org/10.1002/qj.4176.

    Article  Google Scholar 

  • Shakespeare, C. J., and M. L. Roderick, 2022: Diagnosing instantaneous forcing and feedbacks of downwelling longwave radiation at the surface: A simple methodology and its application to CMIP5 models. J. Climate, 35, 3785–3801, https://doi.org/10.1175/JCLI-D-21-0865.1.

    Article  Google Scholar 

  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, https://doi.org/10.1029/2007GL031008.

    Article  Google Scholar 

  • Shupe, M. D., 2011: Clouds at arctic atmospheric observatories. Part II: Thermodynamic phase characteristics. J. Appl. Meteorol. Climatol., 50, 645–661, https://doi.org/10.1175/2010JAMC2468.1.

    Article  Google Scholar 

  • Smith, S. E., B. J. Stanislawski, B. K. Eng, N. Ali, T. J. Silverman, M. Calaf, and R. B. Cal, 2022a: Viewing convection as a solar farm phenomenon broadens modern power predictions for solar photovoltaics. Journal of Renewable and Sustainable Energy, 14, 063502, https://doi.org/10.1063/5.0105649.

    Article  Google Scholar 

  • Smith, S. E., B. Viggiano, N. Ali, T. J. Silverman, M. Obligado, M. Calaf, and R. B. Cal, 2022b: Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy, 325, 119819, https://doi.org/10.1016/j.apenergy.2022.119819.

    Article  Google Scholar 

  • Wang, F., and Coauthors, 2023: Heat-dissipation performance of photovoltaic panels with a phase-change-material fin structure. Journal of Cleaner Production, 423, 138756, https://doi.org/10.1016/j.jclepro.2023.138756.

    Article  Google Scholar 

  • Yang, D. Z., 2016: Solar radiation on inclined surfaces: Corrections and benchmarks. Solar Energy, 136, 288–302, https://doi.org/10.1016/j.solener.2016.06.062.

    Article  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to Mr. Jason KNISS (U.S. Coast Guard) and Dr. Richard INMAN (UC San Diego) for processing the data and generating earlier versions of Fig. 2. Fruitful discussions with Prof. Lynn RUSSELL from the Scripps Institution of Oceanography at UC San Diego are also gratefully acknowledged. Prof. Dazhi YANG from the Harbin Institute of Technology asked me to look into the heat transfer impact of solar farms, and I am also indebted to him for the invitation to write this paper for AAS. Partial funding from the John Dove Isaacs Endowed Chair for Natural Philosophy in Engineering at UC San Diego is greatly appreciated.

Author information

Authors and Affiliations

  1. Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, Center of Excellence in Renewable Resource Integration and Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA

    Carlos F. M. Coimbra

Authors
  1. Carlos F. M. Coimbra
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Carlos F. M. Coimbra.

Ethics declarations

Conflicts of interest. The author declares no conflicts of interest.

Additional information

Article Highlights

• Detailed thermal balances yield alternative methods to determine convective effects on PV panels.

• Experimental and modeling methods are combined to determine the impacts of solar farms.

• A methodology to classify microclimates according to the effective optical depth of the sky is proposed.

• Global heat transfer coefficients can be determined from solar farm operating conditions.

• Understanding the impacts of solar farms on sensitive desert habitats requires detailed thermal balances at the panel scale.

This paper is a contribution to the special topic on Solar Energy Meteorology.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coimbra, C.F.M. Energy Meteorology for the Evaluation of Solar Farm Thermal Impacts on Desert Habitats. Adv. Atmos. Sci. 42, 313–326 (2025). https://doi.org/10.1007/s00376-024-4242-3

Download citation

  • Received: 24 June 2024

  • Revised: 20 August 2024

  • Accepted: 15 September 2024

  • Published: 28 December 2024

  • Issue Date: February 2025

  • DOI: https://doi.org/10.1007/s00376-024-4242-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • environmental impact
  • solar farms
  • thermal balances
  • shortwave and longwave radiation
  • convection

关键词

  • 环境影响
  • 太阳能发电厂
  • 热平衡
  • 短波和长波辐射
  • 对流
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Solar Energy Meteorology

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature