Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning

  • Original Paper
  • Open access
  • Published: 28 December 2024
  • Volume 42, pages 297–312, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning
Download PDF
  • Nina Horat1,
  • Sina Klerings1 &
  • Sebastian Lerch1,2 
  • 1578 Accesses

  • 100 Altmetric

  • 15 Mentions

  • Explore all metrics

Abstract

Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting, where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production. Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather, and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions. However, ensemble prediction systems are known to exhibit systematic errors, and thus require post-processing to obtain accurate and reliable probabilistic forecasts. The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy: not applying any post-processing at all; post-processing only the irradiance predictions before the conversion; post-processing only the solar power predictions obtained from the model chain; or applying post-processing in both steps. In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S., we develop statistical and machine learning methods for post-processing ensemble predictions of global horizontal irradiance (GHI) and solar power generation. Further, we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain. Our results indicate that postprocessing substantially improves the solar power generation forecasts, in particular when post-processing is applied to the power predictions. The machine learning methods for post-processing slightly outperform the statistical methods, and the direct forecasting approach performs comparably to the post-processing strategies.

摘要

数值天气预报模型的天气预测结果在太阳能预测中起着核心作用, 进一步基于物理模型链方法将太阳辐照度预测值转为光功率预测值. 天气模型的集合预报主要用于量化未来天气预报的不确定性, 并可以将不确定性通过模型链传播, 生成概率性的太阳能预测. 然而, 集合预报系统通常会产生系统性误差, 因此需要通过后处理以获得准确可靠的概率预测. 本研究目标是针对太阳能预测, 系统评估不同后处理方法效果, 包括不进行任何后处理; 仅在辐照度预测进行后处理; 仅对通过模型链后的光功率预测进行后处理; 或对辐照度预测和光功率预测值均进行后处理. 基于美国Jacumba太阳能电站的基准数据集, 本文发展了针对总辐照度和光功率的集合预测的统计和机器学习方法. 此外, 我们提出了一种基于神经网络的光功率预测模型, 替代模型链. 结果表明, 后处理方法显著提高了太阳能预测的准确性, 尤其是在对光功率预测值进行后处理. 基于机器学习的后处理方法略微优于统计方法, 直接预测方法与最佳后处理策略的表现相当.

Article PDF

Download to read the full article text

Similar content being viewed by others

Exploring the Limits of Machine Learning in the Prediction of Solar Radiation

Chapter © 2022

Day ahead hourly solar radiation forecasting using a modified neural network: application to direct, diffuse, and global components

Article 06 September 2024

Dynamic Ensemble Using Previous and Predicted Future Performance for Multi-step-ahead Solar Power Forecasting

Chapter © 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Energy Informatics
  • Machine Learning
  • Solar Physics
  • Renewable Energy
  • Statistical Learning
  • Statistics and Computing
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Appino, R. R., J. Á. González Ordiano, R. Mikut, R. Faulwasser, and V. Hagenmeyer, 2018: On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages. Applied Energy, 210, 1207–1218, https://doi.org/10.1016/j.apenergy.2017.08.133.

    Google Scholar 

  • Bakker, K., K. Whan, W. Knap, and M. Schmeits, 2019: Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation. Solar Energy, 191, 138–150, https://doi.org/10.1016/j.solener.2019.08.044.

    Google Scholar 

  • Baran, Á., and S. Baran, 2024: A two-step machine-learning approach to statistical post-processing of weather forecasts for power generation. Quart. J. Roy. Meteor. Soc., 150, 1029–1047, https://doi.org/10.1002/qj.4635.

    Google Scholar 

  • Baran, S., and S. Lerch, 2015: Log-normal distribution based ensemble model output statistics models for probabilistic wind-speed forecasting. Quart. J. Roy. Meteor. Soc., 141, 2289–2299, https://doi.org/10.1002/qj.2521.

    Google Scholar 

  • Baran, S., and S. Lerch, 2016: Mixture EMOS model for calibrating ensemble forecasts of wind speed. Environmetrics, 27, 116–130, https://doi.org/10.1002/env.2380.

    CAS  Google Scholar 

  • Bi, K. F., L. X. Xie, H. H. Zhang, X. Chen, X. T. Gu, and Q. Tian, 2023: Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3.

    CAS  Google Scholar 

  • Bremnes, J. B., 2020: Ensemble postprocessing using quantile function regression based on neural networks and bernstein polynomials. Mon. Wea. Rev., 148, 403–414, https://doi.org/10.1175/MWR-D-19-0227.1.

    Google Scholar 

  • Bülte, C., N. Horat, J. Quinting, and S. Lerch, 2024: Uncertainty quantification for data-driven weather models. Available from https://arxiv.org/abs/2403.13458.

    Google Scholar 

  • Chapman, W. E., L. Delle Monache, S. Alessandrini, A. C. Subramanian, F. M. Ralph, S.-P. Xie, S. Lerch, and N. Hayatbini, 2022: Probabilistic predictions from deterministic atmospheric river forecasts with deep learning. Mon. Wea. Rev., 150, 215–234, https://doi.org/10.1175/MWR-D-21-0106.1.

    Google Scholar 

  • Czado, C., T. Gneiting, and L. Held, 2009: Predictive model assessment for count data. Biometrics, 65, 1254–1261, https://doi.org/10.1111/j.1541-0420.2009.01191.x.

    Google Scholar 

  • Demaeyer, J., and Coauthors, 2023: The EUPPBench postprocessing benchmark dataset v1.0. Earth System Science Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023.

    Google Scholar 

  • Diebold, F. X., and R. S. Mariano, 1995: Comparing predictive accuracy. Journal of Business & Economic Statistics, 13, 253–263, https://doi.org/10.1080/07350015.1995.10524599.

    Google Scholar 

  • Erbs, D. G., S. A. Klein, and J. A. Duffie, 1982: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28, 293–302, https://doi.org/10.1016/0038-092X(82)90302-4.

    Google Scholar 

  • Fraunhofer Institute for Solar Energy Systems, 2024: Recent facts about photovoltaics in Germany. Technical report. Available from https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-in-germany.html.

    Google Scholar 

  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102, 359–378, https://doi.org/10.1198/016214506000001437.

    CAS  Google Scholar 

  • Gneiting, T., and M. Katzfuss, 2014: Probabilistic forecasting. Annual Review of Statistics and its Application, 1, 125–151, https://doi.org/10.1146/annurev-statistics-062713-085831.

    Google Scholar 

  • Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118, https://doi.org/10.1175/MWR2904.1.

    Google Scholar 

  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society Series B: Statistical Methodology, 69, 243–268, https://doi.org/10.1111/j.1467-9868.2007.00587.x.

    Google Scholar 

  • Gneiting, T., S. Lerch, and B. Schulz, 2023a: Probabilistic solar forecasting: Benchmarks, post-processing, verification. Solar Energy, 252, 72–80, https://doi.org/10.1016/j.solener.2022.12.054.

    Google Scholar 

  • Gneiting, T., and Coauthors, 2023b: Model diagnostics and forecast evaluation for quantiles. Annual Review of Statistics and its Application, 10, 597–621, https://doi.org/10.1146/annurev-statistics-032921-020240.

    Google Scholar 

  • Gottwalt, S., J. Gärttner, H. Schmeck, and C. Weinhardt, 2017: Modeling and valuation of residential demand flexibility for renewable energy integration. IEEE Transactions on Smart Grid, 8, 2565–2574, https://doi.org/10.1109/tsg.2016.2529424.

    Google Scholar 

  • Haupt, S. E., and Coauthors, 2019: The use of probabilistic forecasts: Applying them in theory and practice. IEEE Power and Energy Magazine, 17, 46–57, https://doi.org/10.1109/MPE.2019.2932639.

    Google Scholar 

  • Haupt, S. E., W. Chapman, S. V. Adams, C. Kirkwood, J. S. Hosking, N. H. Robinson, S. Lerch, and A. C. Subramanian, 2021: Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379, 20200091 https://doi.org/10.1098/rsta.2020.0091.

    Google Scholar 

  • Horat, N., and S. Lerch, 2024: Deep learning for postprocessing global probabilistic forecasts on subseasonal time scales. Mon. Wea. Rev., 152, 667–687, https://doi.org/10.1175/MWR-D-23-0150.1.

    Google Scholar 

  • Jordan, A., F. Krüger, and S. Lerch, 2019: Evaluating probabilistic forecasts with scoringRules. Journal of Statistical Software, 90, 1–37, https://doi.org/10.18637/jss.v090.i12.

    Google Scholar 

  • King, D. L., W. E. Boyson, and J. A. Kratochvil, 2004: Photovoltaic array performance model. AC04-94AL85000.

    Google Scholar 

  • Kingma, D. P., and J. Ba, 2015: Adam: A method for stochastic optimization. Proc. 3rd International Conf. on Learning Representations, San Diego, USA.

    Google Scholar 

  • Lam, R., and Coauthors, 2023: Learning skillful medium-range global weather forecasting. Science, 382, 1416–1421, https://doi.org/10.1126/science.adi2336.

    CAS  Google Scholar 

  • Lang, S., and Coauthors, 2024: AIFS – ECMWF’s data-driven forecasting system. Available from https://arxiv.org/abs/2406.01465.

    Google Scholar 

  • Lauret, P., M. David, and P. Pinson, 2019: Verification of solar irradiance probabilistic forecasts. Solar Energy, 194, 254–271, https://doi.org/10.1016/j.solener.2019.10.041.

    Google Scholar 

  • Lawrence Berkeley National Lab., 2021: Solar-to-grid public data file for utility-scale (UPV) and distributed photovoltaics (DPV) generation, capacity credit, and value for 2012–2020. Available from https://doi.org/10.25984/1825661.

    Google Scholar 

  • Le Gal La Salle, J., J. Badosa, M. David, P. Pinson, and P. Lauret, 2020: Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts. Renewable Energy, 162, 1321–1339, https://doi.org/10.1016/j.renene.2020.07.042.

    Google Scholar 

  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus A: Dynamic Meteorology and Oceanography, 65, 21206, https://doi.org/10.3402/tellusa.v65i0.21206.

    Google Scholar 

  • Lerch, S., and S. Baran, 2017: Similarity-based semilocal estimation of post-processing models. Journal of the Royal Statistical Society Series C: Applied Statistics, 66, 29–51, https://doi.org/10.1111/rssc.12153.

    Google Scholar 

  • Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Management Science, 22, 1087–1096, https://doi.org/10.1287/mnsc.22.10.1087.

    Google Scholar 

  • Mayer, M. J., and G. Gróf, 2021: Extensive comparison of physical models for photovoltaic power forecasting. Applied Energy, 283, 116239, https://doi.org/10.1016/j.apenergy.2020.116239.

    Google Scholar 

  • Mayer, M. J., and D. Yang, 2022: Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains. Renewable and Sustainable Energy Reviews, 168, 112821, https://doi.org/10.1016/j.rser.2022.112821.

    Google Scholar 

  • Mayer, M. J., and D. Yang, 2023: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting. Renewable and Sustainable Energy Reviews, 175, 113171, https://doi.org/10.1016/j.rser.2023.113171.

    Google Scholar 

  • Messner, J. W., G. J. Mayr, A. Zeileis, and D. S. Wilks, 2014: Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Mon. Wea. Rev., 142, 448–456, https://doi.org/10.1175/MWR-D-13-00271.1.

    Google Scholar 

  • Mikolov, T., K. Chen, G. Corrado, and J. Dean, 2013: Efficient estimation of word representations in vector space. Proc. 1st International Conf. on Learning Representations, Scottsdale, Arizona, USA.

    Google Scholar 

  • Phipps, K., S. Lerch, M. Andersson, R. Mikut, V. Hagenmeyer, and N. Ludwig, 2022: Evaluating ensemble post-processing for wind power forecasts. Wind Energy, 25, 1379–1405, https://doi.org/10.1002/we.2736.

    Google Scholar 

  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1.

    Google Scholar 

  • Reda, I., and A. Andreas, 2004: Solar position algorithm for solar radiation applications. Solar Energy, 76, 577–589, https://doi.org/10.1016/j.solener.2003.12.003.

    Google Scholar 

  • Reindl, D. T., W. A. Beckman, and J. A. Duffie, 1990: Evaluation of hourly tilted surface radiation models. Solar Energy, 45, 9–17, https://doi.org/10.1016/0038-092X(90)90061-G.

    Google Scholar 

  • Roberts, J. J., A. A. Mendiburu Zevallos, and A. M. Cassula, 2017: Assessment of photovoltaic performance models for system simulation. Renewable and Sustainable Energy Reviews, 72, 1104–1123, https://doi.org/10.1016/j.rser.2016.10.022.

    Google Scholar 

  • Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096, https://doi.org/10.1002/qj.2183.

    Google Scholar 

  • Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill, 2020: Using artificial neural networks for generating probabilistic subseasonal precipitation forecasts over California. Mon. Wea. Rev., 148, 3489–3506, https://doi.org/10.1175/MWR-D-20-0096.1.

    Google Scholar 

  • Schulz, B., and S. Lerch, 2022: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Wea. Rev., 150, 235–257, https://doi.org/10.1175/MWR-D-21-0150.1.

    Google Scholar 

  • Schulz, B., M. El Ayari, S. Lerch, and S. Baran, 2021: Post-processing numerical weather prediction ensembles for probabilistic solar irradiance forecasting. Solar Energy, 220, 1016–1031, https://doi.org/10.1016/j.solener.2021.03.023.

    Google Scholar 

  • Sengupta, M., Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. Shelby, 2018: The national solar radiation data base (NSRDB). Renewable and Sustainable Energy Reviews, 89, 51–60, https://doi.org/10.1016/j.rser.2018.03.003.

    Google Scholar 

  • Song, M., and Coauthors, 2024: Non-crossing quantile regression neural network as a calibration tool for ensemble weather forecasts. Adv. Atmos. Sci., 41, 1417–1437, https://doi.org/10.1007/s00376-023-3184-5.

    Google Scholar 

  • Taillardat, M., O. Mestre, M. Zamo, and P. Naveau, 2016: Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics. Mon. Wea. Rev., 144, 2375–2393, https://doi.org/10.1175/MWR-D-15-0260.1.

    Google Scholar 

  • Theocharides, S., G. Makrides, A. Livera, M. Theristis, P. Kaimakis, and G. E. Georghiou, 2020: Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Applied Energy, 268, 115023, https://doi.org/10.1016/j.apenergy.2020.115023.

    Google Scholar 

  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. Journal of the Royal Statistical Society Series A: Statistics in Society, 173, 371–388, https://doi.org/10.1111/j.1467-985X.2009.00616.x.

    Google Scholar 

  • van der Meer, D. W., J. Widén, and J. Munkhammar, 2018: Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews, 81, 1484–1512, https://doi.org/10.1016/j.rser.2017.05.212.

    Google Scholar 

  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681–E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    Google Scholar 

  • Veldkamp, S., K. Whan, S. Dirksen, and M. Schmeits, 2021: Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Wea. Rev., 149, 1141–1152, https://doi.org/10.1175/MWR-D-20-0219.1.

    Google Scholar 

  • Wang, W., D. Yang, T. Hong, and J. Kleissl, 2022: An archived dataset from the ECMWF ensemble prediction system for probabilistic solar power forecasting. Solar Energy, 248, 64–75, https://doi.org/10.1016/j.solener.2022.10.062.

    Google Scholar 

  • Yagli, G. M., D. Yang, and D. Srinivasan, 2020: Ensemble solar forecasting using data-driven models with probabilistic post-processing through GAMLSS. Solar Energy, 208, 612–622, https://doi.org/10.1016/j.solener.2020.07.040.

    Google Scholar 

  • Yang, D., 2019: A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). Journal of Renewable and Sustainable Energy, 11, 022701, https://doi.org/10.1063/1.5087462.

    Google Scholar 

  • Yang, D., 2020: Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit. Journal of Renewable and Sustainable Energy, 12, 036101, https://doi.org/10.1063/5.0010003.

    Google Scholar 

  • Yang, D., and C. A. Gueymard, 2020: Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance. Solar Energy, 208, 591–603, https://doi.org/10.1016/j.solener.2020.05.082.

    Google Scholar 

  • Yang, D., and D. van der Meer, 2021: Post-processing in solar forecasting: Ten overarching thinking tools. Renewable and Sustainable Energy Reviews, 140, 110735, https://doi.org/10.1016/j.rser.2021.110735.

    Google Scholar 

  • Yang, D., E. Wu, and J. Kleissl, 2019: Operational solar forecasting for the real-time market. International Journal of Forecasting, 35, 1499–1519, https://doi.org/10.1016/j.ijforecast.2019.03.009.

    Google Scholar 

  • Yang, D., X. Xia, and M. J. Mayer, 2024: A tutorial review of the solar power curve: Regressions, model chains, and their hybridization and probabilistic extensions. Adv. Atmos. Sci., 41, 1023–1067, https://doi.org/10.1007/s00376-024-3229-4.

    Google Scholar 

  • Zhong, X., L. Chen, X. Fan, W. Qian, J. Liu, and H. Li, 2024: FuXi-2.0: Advancing Machine Learning Weather Forecasting Model for Practical Applications. Available from https://arxiv.org/abs/2409.07188.

    Google Scholar 

Download references

Acknowledgements

The research leading to these results was carried out within the Young Investigator Group “Artificial Intelligence for Probabilistic Weather Forecasting” funded by the Vector Stiftung. In addition, this project received funding from the Federal Ministry of Education and Research (BMBF) and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments. We thank Peter Knippertz, Wenting Wang and Dazhi Yang for helpful comments and discussions. We further thank the two anonymous reviewers, whose constructive comments helped to improve an earlier version of this paper.

Funding

Funding note Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Institute of Statistics, Karlsruhe Institute of Technology, Karlsruhe, 76185, Germany

    Nina Horat, Sina Klerings & Sebastian Lerch

  2. Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany

    Sebastian Lerch

Authors
  1. Nina Horat
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Sina Klerings
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Sebastian Lerch
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Sebastian Lerch.

Additional information

Article Highlights

• Post-processing substantially improves solar power forecasts, particularly, when the post-processing is applied to the power predictions.

• Whether or not the GHI forecasts are post-processed before using them as input to the model chain plays an almost negligible role.

• Post-processing methods for GHI and photovoltaic power should make use of the hour of the day, either as a predictor or by utilizing separate models.

• A neural-network-based, direct forecasting model that bypasses the model chain performs comparably to the best postprocessing strategy.

This paper is a contribution to the special topic on Solar Energy Meteorology.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horat, N., Klerings, S. & Lerch, S. Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning. Adv. Atmos. Sci. 42, 297–312 (2025). https://doi.org/10.1007/s00376-024-4219-2

Download citation

  • Received: 06 June 2024

  • Revised: 19 September 2024

  • Accepted: 23 September 2024

  • Published: 28 December 2024

  • Issue Date: February 2025

  • DOI: https://doi.org/10.1007/s00376-024-4219-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • solar forecasting
  • post-processing
  • probabilistic forecasting
  • machine learning
  • model chain

关键词

  • 太阳能预测
  • 后处理
  • 概率性预测
  • 机器学习
  • 模型链
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Solar Energy Meteorology

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature