Article PDF
Avoid common mistakes on your manuscript.
References
Coimbra, C. F. M., 2025: Energy meteorology for the evaluation of solar farm thermal impacts on desert habitats. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-4242-3.
Horat, N., S. Klerings, and S. Lerch, 2025: Improving model chain approaches for probabilistic solar energy forecasting through post-processing and machine learning. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-4219-2.
Jackson, R. B., C. Le Quéré, R. M. Andrew, J. G. Canadell, J. I. Korsbakken, Z. Liu, G. P. Peters, and B. Zheng, 2018: Global energy growth is outpacing decarbonization. Environmental Research Letters, 13, 120401, https://doi.org/10.1088/1748-9326/aaf303.
Li, M. Y., Y. J. Jiang, and C. F. M. Coimbra, 2017: On the determination of atmospheric longwave irradiance under all-sky conditions. Solar Energy, 144, 40–48, https://doi.org/10.1016/j.solener.2017.01.006.
Mayer, M. J., 2022: Benefits of physical and machine learning hybridization for photovoltaic power forecasting. Renewable and Sustainable Energy Reviews, 168, 112772, https://doi.org/10.1016/j.rser.2022.112772.
Mayer, M. J., and G. Gróf, 2021: Extensive comparison of physical models for photovoltaic power forecasting. Applied Energy, 283, 116239, https://doi.org/10.1016/j.apenergy.2020.116239.
Mayer, M. J., and D. Z. Yang, 2023: Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting. Renewable and Sustainable Energy Reviews, 175, 113171, https://doi.org/10.1016/j.rser.2023.113171.
Mayer, M. J., and D. Z. Yang, 2024: Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow. Applied Energy, 371, 123681, https://doi.org/10.1016/j.apenergy.2024.123681.
Miller, S. D., M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, 2018: Short-term solar irradiance forecasting via satellite/model coupling. Solar Energy, 168, 102–117, https://doi.org/10.1016/j.solener.2017.11.049.
Møller, K. M., 2024: Domestic renewable energy industries and national decarbonization policy. Energy Policy, 192, 114249, https://doi.org/10.1016/j.enpol.2024.114249.
Peters, I. M., 2025: Strategic global deployment of photovoltaic technology: Balancing economic capacity and decarbonization potential. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-4176-9.
Sengupta, M., Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. Shelby, 2018: The National Solar Radiation Data Base (NSRDB). Renewable and Sustainable Energy Reviews, 89, 51–60, https://doi.org/10.1016/j.rser.2018.03.003.
Xia, X., D. Yang, and Y. Shen, 2025: Fengyun radiation services for solar energy meteorology: Status and perspective. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-3164-4.
Yang, D. Z., and D. van der Meer, 2021: Post-processing in solar forecasting: Ten overarching thinking tools. Renewable and Sustainable Energy Reviews, 140, 110735, https://doi.org/10.1016/j.rser.2021.110735.
Yang, D., X. Xia, and M. J. Mayer, 2024: A tutorial review of the solar power curve: Regressions, model chains, and their hybridization and probabilistic extensions. Adv. Atmos. Sci., 41, 1023–1067, https://doi.org/10.1007/s00376-024-3229-4.
Yang, D., B. Liu, H. Zhang, X. Xia, Y. Shen, and M. J. Mayer, 2025: A second tutorial review of the solar power curve: Its applications in energy meteorology. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-4214-7.
Author information
Authors and Affiliations
Additional information
This paper is a contribution to the special topic on Solar Energy Meteorology.
Rights and permissions
About this article
Cite this article
Yang, D., Xia, X. Preface to the Special Topic on Solar Energy Meteorology. Adv. Atmos. Sci. 42, 249–251 (2025). https://doi.org/10.1007/s00376-024-4007-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-024-4007-z