Article PDF
Avoid common mistakes on your manuscript.
References
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
Liu, D. A., Q. H. Yang, A. Tsarau, Y. T. Huang, and X. W. Li, 2023a: A parameterization scheme for wind wave modules that includes the sea ice thickness in the marginal ice zone. Adv. Atmos. Sci., 40(12), 2279–2287, https://doi.org/10.1007/s00376-023-2188-5.
Liu, Y. C., Y. Q. Kong, Q. H. Yang, and X. M. Hu, 2023b: Influence of surface types on the seasonality and inter-model spread of Arctic amplification in CMIP6. Adv. Atmos. Sci., 40(12), 2288–2301, https://doi.org/10.1007/s00376-023-2338-9.
Mu, M., D. H. Luo, and F. Zheng, 2022: Preface to the special issue on extreme cold events from East Asia to North America in winter 2020/21. Adv. Atmos. Sci., 39, 543–545, https://doi.org/10.1007/s00376-021-1004-3.
Overland, J. E., and Coauthors, 2021: How do intermittency and simultaneous processes obfuscate the Arctic influence on midlatitude winter extreme weather events?. Environmental Research Letters, 16, 043002, https://doi.org/10.1088/1748-9326/abdb5d.
Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 3548–3554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.
Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 11, 155–163, https://doi.org/10.1038/s41561-018-0059-y.
Tao, W., L. L. Zheng, Y. Hao, and G. P. Liu, 2023: An extreme gale event in East China under the Arctic potential vorticity anomaly through the Northeast China cold vortex. Adv. Atmos. Sci., 40(12), 2169–2182, https://doi.org/10.1007/s00376-023-2255-y.
Tsubouchi, T., K. Våge, B. Hansen, K. M. H. Larsen, S. Østerhus, C. Johnson, S. Jónsson, and H. Valdimarsson, 2021: Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016. Nature Climate Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3.
Wang, T., Q. Fu, W. S. Tian, H. W. Liu, Y. F. Peng, F. Xie, H. Y. Tian, and J. L. Luo, 2023: The Influence of meridional variation in North Pacific sea surface temperature anomalies on the Arctic stratospheric polar vortex. Adv. Atmos. Sci., 40(12), 2262–2278, https://doi.org/10.1007/s00376-022-2033-2.
Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 4717–4721, https://doi.org/10.1002/grl.50912.
Xiao, C. D., Q. Zhang, J. Yang, Z. H. Du, M. H. Ding, T. F. Dou, and B. H. Luo, 2023: A statistical linkage between extreme cold wave events in southern China and sea ice extent in the Barents–Kara Seas from 1289 to 2017. Adv. Atmos. Sci., 40(12), 2154–2168, https://doi.org/10.1007/s00376-023-2227-2.
Zhang, P. F., G. Chen, M. Ting, L. R. Leung, B. Guan, and L. F. Li, 2023: More frequent atmospheric rivers slow the seasonal recovery of Arctic sea ice. Nature Climate Change, 13, 266–273, https://doi.org/10.1038/s41558-023-01599-3.
Zhang, X. D., T. Jung, M. Y. Wang, Y. Luo, T. Semmler, and A. Orr, 2018: Preface to the special issue: Towards improving understanding and prediction of Arctic change and its linkage with Eurasian mid-latitude weather and climate. Adv. Atmos. Sci., 35, 1–4, https://doi.org/10.1007/s00376-017-7004-7.
Zhang, X. D., J. X. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. L. Wu, 2013: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nature Climate Change, 3, 47–51, https://doi.org/10.1038/nclimate1631.
Zhang, X. D., Y. F. Fu, Z. Han, J. E. Overland, A. Rinke, H. Tang, T. Vihma, and M. Y. Wang, 2022: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., 39, 553–565, https://doi.org/10.1007/s00376-021-1229-1.
Author information
Authors and Affiliations
Additional information
This paper is a contribution to the special issue on Changing Arctic Climate and Low/Mid-latitudes Connections
Rights and permissions
About this article
Cite this article
Zhang, X., Chen, X., Orr, A. et al. Preface to the Special Issue on Changing Arctic Climate and Low/Mid-latitudes Connections. Adv. Atmos. Sci. 40, 2135–2137 (2023). https://doi.org/10.1007/s00376-023-3015-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-023-3015-8