Abstract
The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
摘 要
深度学习在气候预测中的应用正在快速发展, 其中厄尔尼诺-南方涛动(El Niño–Southern Oscillation, 以下简称ENSO)作为引发灾害性气候事件的主要模态, 是气候预测的一个关键研究对象. 过去的研究表明, 深度学习方法在预测ENSO指数方面具有一定的优势. 本研究通过使用CMIP6模式的历史模拟数据, 训练卷积神经网络(CNN)模型, 开发了一个用于预测赤道太平洋海表温度异常(SSTAs)空间形态的深度学习模型. 与动力模式相比, CNN模型对赤道中西太平洋地区的SSTAs具有更高的预测技巧, 但在东太平洋却不如动力模式. CNN模型可以成功捕捉到中太平洋(CP)ENSO发展初期SSTAs中的小尺度前兆, 以此能在超前七个月有效区分ENSO的空间形态. 将CNN模型和动力模式的预测结果相结合得到集合模型(fusion model), 其对CP和东太平洋(EP)ENSO事件的预测技巧均优于CNN模型和动力模式单独预测.
This is a preview of subscription content,
to check access.Similar content being viewed by others
Data availability. Data related to this paper can be downloaded from the CMIP6 database (https://esgf-node.llnl.gov/projects/cmip6/), NMME phase 1 (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/), and COBE-SST2 (https://psl.noaa.gov/data/gridded/data.cobe2.html).
References
Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.
Baehrens, D., T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller, 2010: How to explain individual classification decisions. The Journal of Machine Learning Research, 11, 1803–1831.
Boschetti, F., M. Feng, J. R. Hartog, A. J. Hobday, and X. B. Zhang, 2022: Sea Surface Temperature Predictability at the interface between oceanographic modelling and machine learning. Research Square, 1, https://doi.org/10.21203/rs.3.rs-1721732/v1.
Broni-Bedaiko, C., F. A. Katsriku, T. Unemi, M. Atsumi, J.-D. Abdulai, N. Shinomiya, and E. Owusu, 2019: El Niño-Southern Oscillation forecasting using complex networks analysis of LSTM neural networks. Artificial Life and Robotics, 24, 445–451, https://doi.org/10.1007/s10015-019-00540-2.
Cachay, S. R., E. Erickson, A. Fender, C. Bucker, E. Pokropek, W. Potosnak, S. Osei, and B. Lütjens, 2021: Graph neural networks for improved El Niño forecasting. Preprint, arXiv, https://doi.org/10.48550/arXiv.2012.01598.
Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Capotondi, A., A. T. Wittenberg, J.-S. Kug, K. Takahashi, and M. J. McPhaden, 2020: ENSO diversity. El Niño Southern Oscillation in a Changing Climate, M. J. McPhaden, A. Santoso, and W. J. Cai, Eds., American Geophysical Union, 65–86, https://doi.org/10.1002/9781119548164.ch4.
Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño-Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL030302.
Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.
Delsole, T., and M. K. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615–626, https://doi.org/10.1175/MWR-D-15-0218.1.
Deng, L., and D. Yu, 2014: Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7, 197–387, https://doi.org/10.1561/2000000039.
Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 101, 929–945, https://doi.org/10.1029/96JC03296.
Eyring, V., and Coauthors, 2019: Taking climate model evaluation to the next level. Nature Climate Change, 9, 102–110, https://doi.org/10.1038/s41558-018-0355-y.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1377-2016.
Feng, M., and Coauthors, 2022: Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model. Frontiers in Climate, 4, 925068, https://doi.org/10.3389/fclim.2022.925068.
Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nature Geoscience, 11, 450–455, https://doi.org/10.1038/s41561-019-0353-3.
Ham, Y.-G., and J.-S. Kug, 2012: How well do current climate models simulate two types of El Nino. Climate Dyn., 39, 383–398, https://doi.org/10.1007/s00382-011-1157-3.
Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geoscience, 6, 112–116, https://doi.org/10.1038/ngeo1686.
Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7.
He, K. M., X. Y. Zhang, S. Q. Ren, and J. Sun, 2016: Deep residual learning for image recognition. Proc. 2016 IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, IEEE, 770–778, https://doi.org/10.1109/CVPR.2016.90.
Hendon, H. H., E. Lim, G. M. Wang, O. Alves, and D. Hudson, 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713, https://doi.org/10.1029/2009GL040100.
Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 57–75, https://doi.org/10.1175/JCLI-D-12-00837.1.
Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, 2017: Densely connected convolutional networks. Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, IEEE, 2261–2269, https://doi.org/10.1109/CVPR.2017.243.
Imada, Y., H. Tatebe, M. Ishii, Y. Chikamoto, M. Mori, M. Arai, M. Watanabe, and M. Kimoto, 2015: Predictability of two types of El Niño assessed using an extended seasonal prediction system by MIROC. Mon. Wea. Rev., 143, 4597–4617, https://doi.org/10.1175/MWR-D-15-0007.1.
Irrgang, C., N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J. Staneva, and J. Saynisch-Wagner, 2021: Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nature Machine Intelligence, 3, 667–674, https://doi.org/10.1038/s42256-021-00374-3.
Jeong, H.-I., and Coauthors, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475–493, https://doi.org/10.1007/s00382-012-1359-3.
Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Climate, 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1.
Kim, H.-M., P. J. Webster, and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 77–80, https://doi.org/10.1126/science.1174062.
Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585–601, https://doi.org/10.1175/BAMS-D-12-00050.1.
Kokhlikyan, N., and Coauthors, 2020: Captum: A unified and generic model interpretability library for PyTorch. Preprint, arXiv, doi:arxiv:2009.07896.
Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm Pool El Niño. J. Climate, 22, 1499–1515, https://doi.org/10.1175/2008JCLI2624.1.
Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.
Lau, N.-C., and M. J. Nath, 2003: Atmosphere–Ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20, https://doi.org/10.1175/1520-0442(2003)016<00 03:AOVITI>2.0.CO;2.
Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.
Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2022: Neural network attribution methods for problems in geoscience: A novel synthetic benchmark dataset. Environmental Data Science, 1, e8, https://doi.org/10.1017/eds.2022.7.
McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, https://doi.org/10.1029/2012GL051826.
Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures. Geophys. Res. Lett., 44, 8520–8529, https://doi.org/10.1002/2017GL074088.
Newman, M., S.-I. Shin, and M. A. Alexander, 2011: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, https://doi.org/10.1029/2011GL047658.
Pal, M., R. Maity, J. V. Ratnam, M. Nonaka, and S. K. Behera, 2020: Long-lead prediction of ENSO modoki index using machine learning algorithms. Scientific Reports, 60, 365, https://doi.org/10.1038/s41598-019-57183-3.
Patricola, C. M., P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nature Geoscience, 9, 155–160, https://doi.org/10.1038/ngeo2624.
Prabhat, and Coauthors., 2021: ClimateNet: An expert-labeled open dataset and deep learning architecture for enabling high-precision analyses of extreme weather. Geoscientific Model Development, 14, 107–124, https://doi.org/10.5194/gmd-14-107-2021.
Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.
Ren, H.-L., and Coauthors, 2019: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., 52, 3869–3890, https://doi.org/10.1007/s00382-018-4366-1.
Rodrigues, R. R., E. J. D. Campos, and R. Haarsma, 2015: The impact of ENSO on the South Atlantic subtropical dipole mode. J. Climate, 28, 2691–2705, https://doi.org/10.1175/JCLI-D-14-00483.1.
Rodrigues, R. R., R. J. Haarsma, E. J. D. Campos, and T. Ambrizzi, 2011: The impacts of Inter-El Niño variability on the tropical atlantic and Northeast Brazil climate. J. Climate, 24, 3402–3422, https://doi.org/10.1175/2011JCLI3983.1.
Sandler, M., A. Howard, M. L. Zhu, A. Zhmoginov, and L.-C. Chen, 2018: MobileNetV2: Inverted residuals and linear bottlenecks. Proc. 2018 IEEE/CVF Computer Vision and Pattern Recognition, Salt Lake City, UT, IEEE, 4510–4520, https://doi.org/10.1109/CVPR.2018.00474.
Shin, N.-Y., Y.-G. Ham, J.-H. Kim, M. Cho, and J.-S. Kug, 2022: Application of deep learning to understanding ENSO dynamics. Artificial Intelligence for the Earth Systems, 1, e210011, https://doi.org/10.1175/AIES-D-21-0011.1.
Simonyan, K., and A. Zisserman, 2015: Very deep convolutional networks for large-scale image recognition. Proc. 3rd International Conf. on Learning Representations, San Diego, 1–14.
Simonyan, K., A. Vedaldi, and A. Zisserman, 2014: Deep inside convolutional networks: Visualising image classification models and saliency maps. Preprint, arXiv, doi: arXiv: 1312.6034.
Sundararajan, M., A. Taly, and Q. Yan, 2017: Axiomatic attribution for deep networks. Proc. 34th International Conf. on Machine Learning, 3319–3328.
Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011g1047364.
Tang, Y. H., and A. M. Duan, 2021: Using deep learning to predict the East Asian summer monsoon. Environmental Research Letters, 66, 124006, https://doi.org/10.1880/1748-9326/ac34bc.
Taylor, J., and M. Feng, 2022: A deep learning model for forecasting global monthly mean sea surface temperature anomalies. Frontiers in Climate, 4, 932932, https://doi.org/10.3389/fclim.2022.932932.
Taylor, J. A., P. Larraondo, and B. R. de Supinski, 2022: Data-driven global weather predictions at high resolutions. The International Journal of High Performance Computing Applications, 36, 130–140, https://doi.org/10.1177/10943420211039818.
Toms, B. A., E. A. Barnes, and I. Ebert-Uphoff, 2020: Physically interpretable neural networks for the geosciences: Applications to earth system variability. Journal of Advances in Modeling Earth Systems, 12, e2019MS002002, https://doi.org/10.1029/2019MS002002.
Vimont, D. J., M. A. Alexander, and M. Newman, 2014: Optimal growth of central and East Pacific ENSO events. Geophys. Res. Lett., 41, 4027–4034, https://doi.org/10.1002/2014GL059997.
Vissio, G., V. Lembo, V. Lucarini, and M. Ghil, 2020: Evaluating the performance of climate models based on wasserstein distance. Geophys. Res. Lett., 47, e2020GL089385, https://doi.org/10.1029/2020GL089385.
Wang, F., D. Yao, Y. Li, T. Sun, and Z. Zhang, 2023: AI-enhanced spatial-temporal data-mining technology: New chance for next-generation urban computing. The Innovation, 4, 100405, https://doi.org/10.1016/J.XINN.2023.100405.
Wang, X., and C. Z. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean Dipole. Climate Dyn., 41, 991–1005, https://doi.org/10.1007/s00382-013-1711-2.
Wang, Y. F., Z. H. Zhang, and P. Huang, 2020: An improved model-based analogue forecasting for the prediction of the tropical Indo-Pacific Sea surface temperature in a coupled climate model. International Journal of Climatology, 40, 6346–6360, https://doi.org/10.1002/joc.6584.
Weng, H. Y., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129, https://doi.org/10.1007/s03822-007-0234-0.
Wilks, D. S., 2019: Chapter 13 - Principal component (EOF) analysis. Statistical Methods in the Atmospheric Sciences, 4th ed, D. S. Wilks, Ed., Elsevier, 617–668, https://doi.org/10.1016/B978-0-12-815823-4.00013-4.
Xu, Y. J., and Coauthors, 2021: Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2, 100179, https://doi.org/10.1016/j.xinn.2021.100179.
Yan, J. N., L. Mu, L. Z. Wang, R. Ranjan, and A. Y. Zomaya, 2020: Temporal convolutional networks for the advance prediction of ENSO. Scientific Reports, 10, 8055, https://doi.org/10.1038/s41598-020-65070-5.
Yang, X. K., and P. Huang, 2021: Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. The Innovation, 2, 100102, https://doi.org/10.1016/J.XINN.2021.100102.
Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511–514, https://doi.org/10.1038/nature08316.
Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J. Climate, 24, 708–720, https://doi.org/10.1175/2010JCLI3688.1.
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Zhang, Z. Y., B. H. Ren, and J. Q. Zheng, 2019: A unified complex index to characterize two types of ENSO simultaneously. Scientific Reports, 9, 8373, https://doi.org/10.1038/s41598-019-44617-1.
Zheng, F., and J.-Y. Yu, 2017: Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34, 1395–1403, https://doi.org/10.1007/s00376-017-6324-y.
Acknowledgements
The work was supported by the National Key R&D Program of China (Grant No. 2019YFA0606703), the National Natural Science Foundation of China (Grant No. 41975116), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202025).
Author information
Authors and Affiliations
Corresponding author
Additional information
Code availability. The codes for the CNN model can be obtained from the corresponding author.
Article Highlights
• A CNN method is proposed for two-dimensional spatial prediction in the equatorial Pacific.
• The CNN model outperforms current dynamical models in predicting the spatial mode of central Pacific ENSO.
• A fusion model combining the advantages of the dynamical and CNN models achieves higher prediction skill for both types of ENSO.
Electronic Supplementary Material to
Rights and permissions
About this article
Cite this article
Wang, T., Huang, P. Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO. Adv. Atmos. Sci. 41, 141–154 (2024). https://doi.org/10.1007/s00376-023-3001-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-023-3001-1