Abstract
China’s first carbon dioxide (CO2) measurement satellite mission, TanSat, was launched in December 2016. This paper introduces the first attempt to detect anthropogenic CO2 emission signatures using CO2 observations from TanSat and NO2 measurements from the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S5P) satellite. We focus our analysis on two selected cases in Tangshan, China and Tokyo, Japan. We found that the TanSat XCO2 measurements have the capability to capture the anthropogenic variations in the plume and have spatial patterns similar to that of the TROPOMI NO2 observations. The linear fit between TanSat XCO2 and TROPOMI NO2 indicates the CO2-to-NO2 ratio of 0.8 × 10−16 ppm (molec cm−2)−1 in Tangshan and 2.3 × 10−16 ppm (molec cm−2)−1 in Tokyo. Our results align with the CO2-to-NOx emission ratios obtained from the EDGAR v6 emission inventory.
摘要
本研究联合应用了中国碳卫星二氧化碳 (CO2)观测数据和欧洲哨兵 5P 卫星 (Sentinel-5 Precursor) 的二氧化氮 (NO2) 观测数据, 选取了中国唐山 (2018 年 5 月 6 日) 和日本东京 (2018 年 3 月 29 日) 两个个例, 定量计算了人为碳排放和 NO2 的相关性. 计算结果表明, 唐山地区和日本东京的CO2/NO2 比例分别为 0.8×10−16 ppm/(molec/cm2) 和 2.3×10−16 ppm/(molec/cm2), CO2和 NO2 浓度升高的相关性分别为 0.54 和 0.47. 对比两个城市的个例表明, 唐山地区的 CO2/NO2 比例要低于东京地区, 这一结果和排放清单给出的结果一致, 论证了通过联合应用中国碳卫星和欧洲哨兵 5P 卫星的协同观测, 可以对 CO2/NO2 排放比例进行定量监测. 下一代碳监测卫星设计工作已开始. 新一代卫星将秉承第一代卫星的技术, 进一步提升探测能力, 以应用需求与科学需求为出发点, 为应对气候变化和碳达峰碳中和提供观测数据.
Article PDF
Avoid common mistakes on your manuscript.
References
Andres, R. J., T. A. Boden, and D. Higdon, 2014: A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B, 66(1), 23616, https://doi.org/10.3402/tellusb.v66.23616.
Ciais, P., and Coauthors, 2014: Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11(13), 3547–3602, https://doi.org/10.5194/bg-11-3547-2014.
Crippa, M., and Coauthors, 2021: GHG emissions of all world countries. EUR 30831 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-41547-3, doi:https://doi.org/10.2760/074804, JRC126363. [Available online from https://publications.jrc.ec.europa.eu/repository/handle/JRC126363]
Crisp, D., and Coauthors, 2017: The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10, 59–81, https://doi.org/10.5194/amt-10-59-2017.
Crisp, D., and Coauthors, 2018: A constellation architecture for monitoring carbon dioxide and methane from space. [Available online from https://ceos.org/document_management/Virtual_Constellations/ACC/Documents/CEOS_AC-VC_GHG_White_Paper_Publication_Draft2_20181111.pdf]
Friedlingstein, P., and Coauthors, 2022: Global carbon budget 2021. Earth System Science Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022.
Gately, C. K., and L. R. Hutyra, 2017: Large uncertainties in urban-scale carbon emissions. J. Geophys. Res.: Atmos., 122(20), 11 242–11 260, https://doi.org/10.1002/2017JD027359.
Gately, C. K., L. R. Hutyra, and I. Sue Wing, 2015: Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 4999–5004, https://doi.org/10.1073/pnas.1421723112.
Gurney, K. R., J. Liang, D. O’Keeffe, R. Patarasuk, M. Hutchins, J. Huang, P. Rao, and Y. Song, 2019: Comparison of global downscaled versus bottom-up fossil fuel CO2 emissions at the urban scale in four U.S. urban areas. J. Geophys. Res.: Atmos., 124, 2823–2840, https://doi.org/10.1029/2018JD028859.
Hakkarainen, J., I. Ialongo, and J. Tamminen, 2016: Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophys. Res. Lett., 43(21), 11400–11406, https://doi.org/10.1002/2016GL070885.
Hakkarainen, J., I. Ialongo, S. Maksyutov, and D. Crisp, 2019: Analysis of four years of global XCO2 anomalies as seen by orbiting carbon observatory-2. Remote Sensing, 11, 850, https://doi.org/10.3390/rs11070850.
Hakkarainen, J., M. E. Szeląg, I. Ialongo, C. Retscher, T. Oda, and D. Crisp, 2021: Analyzing nitrogen oxides to carbon dioxide emission ratios from space: A case study of Matimba Power Station in South Africa. Atmos. Environ.: X, 10, 100110, https://doi.org/10.1016/j.aeaoa.2021.100110.
Han, P. F., and Coauthors, 2020: A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories. Carbon Balance and Management, 15, 25, https://doi.org/10.1186/s13021-020-00163-2.
Kuze, A., H. Suto, M. Nakajima, and T. Hamazaki, 2009: Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt., 48(35), 6716–6733, https://doi.org/10.1364/AO.48.006716.
Liu, Y., and D. X. Yang, 2016: Advancements in theory of GHG observation from space. Science Bulletin, 61(5), 349–352, https://doi.org/10.1007/s11434-016-1022-1.
Liu, Z., and Coauthors, 2015: Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524, 335–338, https://doi.org/10.1038/nature14677.
Miller, S. M., and A. M. Michalak, 2017: Constraining sector-specific CO2 and CH4 emissions in the US. Atmos. Chem. Phys., 17, 3963–3985, https://doi.org/10.5194/acp-17-3963-2017.
Oda, T., S. Maksyutov, and R. J. Andres, 2018: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth System Science Data, 10(1), 87–107, https://doi.org/10.5194/essd-10-87-2018.
Reuter, M., M. Buchwitz, O. Schneising, S. Krautwurst, C. W. O’Dell, A. Richter, H. Bovensmann, and J. P. Burrows, 2019: Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics, 19, 9371–9383, https://doi.org/10.5194/acp-19-9371-2019.
Yang, D., and Coauthors, 2020: Toward high precision XCO2 retrievals from TanSat observations: Retrieval improvement and validation against TCCON measurements. J. Geophys. Res.: Atmos., 125, e2020JD032794, https://doi.org/10.1029/2020JD032794.
Yang, D. X., Y. Liu, Z. N. Cai, X. Chen, L. Yao, and D. R. Lu, 2018: First global carbon dioxide maps produced from TanSat measurements. Adv. Atmos. Sci., 35, 621–623, https://doi.org/10.1007/s00376-018-7312-6.
Yang, D. X., and Coauthors, 2021: A new TanSat XCO2 global product towards climate studies. Adv. Atmos. Sci., 38, 8–11, https://doi.org/10.1007/s00376-020-0297-y.
Acknowledgements
This work is supported by the National Key Research And Development Plan (2019YFE0127500), International Partnership Program of the Chinese Academy of Sciences (060GJHZ2022070MI). The authors thank the Finland-China mobility cooperation project funded by the Academy of Finland (No. 348596) and the Key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2019-1). Financial support for the Academy of Finland (No. 336798) is kindly acknowledged. The authors thank the TanSat mission, and the support from everyone that worked with TanSat mission is highly appreciated.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material to
376_2022_2237_MOESM1_ESM.pdf
Detection of Anthropogenic CO2 Emission Signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor (S5P) NO2 Measurements: First Results
Rights and permissions
About this article
Cite this article
Yang, D., Hakkarainen, J., Liu, Y. et al. Detection of Anthropogenic CO2 Emission Signatures with TanSat CO2 and with Copernicus Sentinel-5 Precursor (S5P) NO2 Measurements: First Results. Adv. Atmos. Sci. 40, 1–5 (2023). https://doi.org/10.1007/s00376-022-2237-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-022-2237-5