Aagaard, K., and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94, 14 485–14 498, https://doi.org/10.1029/JC094iC10p14485.
Article
Google Scholar
Ayres, H. C., and J. A. Screen, 2019: Multimodel analysis of the atmospheric response to Antarctic sea ice loss at quadrupled CO2. Geophys. Res. Lett., 46, 9861–9869, https://doi.org/10.1029/2019GL083653.
Article
Google Scholar
Cavalieri, D. J., C. L. Parkinson, P. Gloersen, and H. J. Zwally, 1996: Updated yearly. Sea ice concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://doi.org/10.5067/8GQ8LZQVL0VL. https://doi.org/10.5067/8GQ8LZQVL0VL.
Google Scholar
Cheng, L. J., and Coauthors, 2022: Another record: Ocean warming continues through 2021 despite La Niña conditions. Adv. Atmos. Sci., 39, 373–385, https://doi.org/10.1007/s00376-022-1461-3.
Article
Google Scholar
Dong, X., Y. T. Wang, S. G. Hou, M. H. Ding, B. L. Yin, and Y. L. Zhang, 2020: Robustness of the recent global atmospheric reanalyses for Antarctic near-surface wind speed climatology. J. Climate, 33, 4027–4043, https://doi.org/10.1175/JCLI-D-19-0648.1.
Article
Google Scholar
Eayrs, C., X. C. Li, M. N. Raphael, and D. M. Holland, 2021: Rapid decline in Antarctic sea ice in recent years hints at future change. Nature Geoscience, 14, 460–464, https://doi.org/10.1038/s41561-021-00768-3.
Article
Google Scholar
ECMWF, 2018: ERA5 hourly data on single levels from 1979 to present. Available online from https://cds.climate.copernicus.eu/cds-app#!/dataset/reanalysis-era5-single-levels?tab=overview.
Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson, 2014: Antarctic sea ice control on ocean circulation in present and glacial climates. Proceedings of the National Academy of Sciences of the United States of America, 111, 8753–8758, https://doi.org/10.1073/pnas.1323922111.
Article
Google Scholar
Fogt, R. L., and G. J. Marshall, 2020: The southern annular mode: Variability, trends, and climate impacts across the southern hemisphere. WIREs Climate Change, 11, e652, https://doi.org/10.1002/wcc.652.
Article
Google Scholar
Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 1555–1576, https://doi.org/10.1007/s00382-010-0905-0.
Article
Google Scholar
Hobbs, W. R., R. Massom, S. Stammerjohn, P. Reid, G. Williams, and W. Meier, 2016: A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Global and Planetary Change, 143, 228–250, https://doi.org/10.1016/j.gloplacha.2016.06.008.
Article
Google Scholar
Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nature Geoscience, 5, 872–875, https://doi.org/10.1038/ngeo1627.
Article
Google Scholar
Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of arctic and Antarctic sea ice. J. Climate, 29, 5241–5249, https://doi.org/10.1175/JCLI-D-16-0121.1.
Article
Google Scholar
Kirkman, C. H., and C. M. Bitz, 2011: The effect of the sea ice freshwater flux on southern ocean temperatures in CCSM3: Deep-ocean warming and delayed surface warming. J. Climate, 24, 2224–2237, https://doi.org/10.1175/2010JCLI3625.1.
Article
Google Scholar
Kurtz, N. T., T. Markus, S. L. Farrell, D. L. Worthen, and L. N. Boisvert, 2011: Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. J. Geophys. Res., 116, C04015, https://doi.org/10.1029/2010JC006235.
Google Scholar
Lecomte, O., H. Goosse, T. Fichefet, P. R. Holland, P. Uotila, V. Zunz, and N. Kimura, 2016: Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models. Ocean Modelling, 105, 60–70, https://doi.org/10.1016/j.ocernod.2016.08.001.
Article
Google Scholar
Liu, J. P., J. A. Curry, and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, https://doi.org/10.1029/2003GL018732.
Google Scholar
Maksym, T., 2019: Arctic and Antarctic sea ice change: Contrasts, commonalities, and causes. Annual Review of Marine Science, 11, 187–213, https://doi.org/10.1146/annurev-marine-010816-060610.
Article
Google Scholar
Meier, W. N., J. S. Stewart, H. Wilcox, M. A. Hardman, and D. J. Scott, 2021: Near-Real-Time DMSP SSMIS daily polar gridded sea ice concentrations, Version 2. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://doi.org/10.5067/YTTHO2FJQ97K.
Google Scholar
Notz, D., and J. Stroeve, 2016: Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354, 747–750, https://doi.org/10.1126/science.aag2345.
Article
Google Scholar
Parkinson, C. L., 2019: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116, 14 414–14 423, https://doi.org/10.1073/pnas.1906556116.
Article
Google Scholar
Petty, A. A., R. Kwok, M. Bagnardi, A. Ivanoff, N. Kurtz, J. Lee, J. Wimert, and D. Hancock, 2021. ATLAS/ICESat-2 L3B daily and monthly gridded sea ice freeboard, Version 3. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://nsidc.org/data/atl20/versions/3.
Google Scholar
Pope, J. O., P. R. Holland, A. Orr, G. J. Marshall, and T. Phillips, 2017: The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett., 44, 6200–6208, https://doi.org/10.1002/2017GL073414.
Article
Google Scholar
Raphael, M. N., 2003: Impact of observed sea — ice concentration on the Southern Hemisphere extratropical atmospheric circulation in summer. J. Geophys. Res., 108, 4687, https://doi.org/10.1029/2002JD003308.
Google Scholar
Raphael, M. N., and M. S. Handcock, 2022: A new record minimum for Antarctic sea ice. Nature Reviews Earth & Environment, https://doi.org/10.1038/s43017-022-00281-0.
Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences, 1436, 36–53, https://doi.org/10.1111/nyas.13856.
Article
Google Scholar
Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to arctic and Antarctic sea ice: The importance of ocean-atmosphere coupling and the background state. J. Climate, 30, 4547–4565, https://doi.org/10.1175/JCLI-D-16-0564.1.
Article
Google Scholar
Søren, R., and Coauthors, 2011: Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus B: Chemical and Physical Meteorology, 63, 823–830, https://doi.org/10.1111/j.1600-0889.2011.00571.x.
Article
Google Scholar
Stammerjohn, S., and T. Maksym, 2016: Gaining (and losing) Antarctic sea ice: Variability, trends and mechanisms. Sea Ice, 3rd ed., D. N. Thomas, Ed., John Wiley & Sons, Ltd., 261–289, https://doi.org/10.1002/9781118778371.ch10.
Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res., 113, C03S90, https://doi.org/10.1029/2007JC004269.
Google Scholar
Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, https://doi.org/10.1029/2007GL029703.
Article
Google Scholar
Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the Southern Antarctic peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.
Article
Google Scholar
Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019a: Polar pathfinder daily 25 km EASE-Grid sea ice motion vectors, Version 4. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://doi.org/10.5067/INAWUWO7QH7B.
Google Scholar
Tschudi, M., W. N. Meier, and J. S. Stewart, 2019b: Quicklook arctic weekly EASE-grid sea ice motion vectors, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Available from https://nsidc.org/data/NSIDC-0748/versions/1.
Google Scholar
Uotila, P., P. R. Holland, T. Vihma, S. J. Marsland, and N. Kimura, 2014: Is realistic Antarctic sea-ice extent in climate models the result of excessive ice drift. Ocean Modelling, 79, 33–42, https://doi.org/10.1016/j.ocemod.2014.04.004.
Article
Google Scholar
Vihma, T., 2014: Effects of arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35, 1175–1214, https://doi.org/10.1007/s10712-014-9284-0.
Article
Google Scholar
Yu, J.-Y., H. Paek, E. S. Saltzman, and T. Lee, 2015: The early 1990s change in ENSO-PSA-SAM relationships and its impact on southern hemisphere climate. J. Climate, 28, 9393–9408, https://doi.org/10.1175/JCLI-D-15-0335.1.
Article
Google Scholar
Yuan, N. M., M. H. Ding, J. Ludescher, and A. Bunde, 2017: Increase of the Antarctic sea ice extent is highly significant only in the Ross Sea. Scientific Reports, 7, 41096, https://doi.org/10.1038/srep41096.
Article
Google Scholar
Zhu, J. P., A. H. Xie, X. Qin, Y. T. Wang, B. Xu, and Y. C. Wang, 2021: An assessment of ERA5 reanalysis for Antarctic near-surface air temperature. Atmosphere, 12, 217, https://doi.org/10.3390/atmos12020217.
Article
Google Scholar