Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article
Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Another Year of Record Heat for the Oceans

11 January 2023

Lijing Cheng, John Abraham, … Guancheng Li

Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades

14 May 2022

Xiaojuan Zhang, Fei Zheng, … Xingrong Chen

Recent Variability in the Arctic Ocean and Subarctic Seas

09 May 2020

Rachel E. Nichols, Bulusu Subrahmanyam & Anthony Arguez

Examining the salinity change in the upper Pacific Ocean during the Argo period

02 August 2019

Guancheng Li, Yuhong Zhang, … Jiang Zhu

Meteorology and Climatology of the Mediterranean and Black Seas: Introduction

23 October 2018

Ivica Vilibić, Kristian Horvath & Jose Luis Palau

Projected engulfment of tropical Indian Ocean by anthropogenical warmpool

17 February 2022

Rameshan Kallummal

Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

27 December 2019

L. Resplandy, R. F. Keeling, … A. Oschlies

Projected slow down of South Indian Ocean circulation

27 November 2019

Annette Stellema, Alex Sen Gupta & Andréa S. Taschetto

Trends, variability and predictive skill of the ocean heat content in North Atlantic: an analysis with the EC-Earth3 model

01 October 2021

Teresa Carmo-Costa, Roberto Bilbao, … Emanuel Dutra

Download PDF
  • Original Paper
  • Open Access
  • Published: 11 January 2022

Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions

  • Lijing Cheng1,2,
  • John Abraham3,
  • Kevin E. Trenberth4,
  • John Fasullo4,
  • Tim Boyer5,
  • Michael E. Mann6,
  • Jiang Zhu1,2,
  • Fan Wang2,7,
  • Ricardo Locarnini5,
  • Yuanlong Li2,7,
  • Bin Zhang2,7,
  • Zhetao Tan1,2,
  • Fujiang Yu8,
  • Liying Wan8,
  • Xingrong Chen8,
  • Xiangzhou Song9,
  • Yulong Liu10,
  • Franco Reseghetti11,
  • Simona Simoncelli12,
  • Viktor Gouretski1,
  • Gengxin Chen13,
  • Alexey Mishonov5,14 &
  • …
  • Jim Reagan5 

Advances in Atmospheric Sciences volume 39, pages 373–385 (2022)Cite this article

  • 9055 Accesses

  • 26 Citations

  • 4837 Altmetric

  • Metrics details

Abstract

The increased concentration of greenhouse gases in the atmosphere from human activities traps heat within the climate system and increases ocean heat content (OHC). Here, we provide the first analysis of recent OHC changes through 2021 from two international groups. The world ocean, in 2021, was the hottest ever recorded by humans, and the 2021 annual OHC value is even higher than last year’s record value by 14 ± 11 ZJ (1 zetta J = 1021 J) using the IAP/CAS dataset and by 16 ± 10 ZJ using NCEI/NOAA dataset. The long-term ocean warming is larger in the Atlantic and Southern Oceans than in other regions and is mainly attributed, via climate model simulations, to an increase in anthropogenic greenhouse gas concentrations. The year-to-year variation of OHC is primarily tied to the El Niño-Southern Oscillation (ENSO). In the seven maritime domains of the Indian, Tropical Atlantic, North Atlantic, Northwest Pacific, North Pacific, Southern oceans, and the Mediterranean Sea, robust warming is observed but with distinct inter-annual to decadal variability. Four out of seven domains showed record-high heat content in 2021. The anomalous global and regional ocean warming established in this study should be incorporated into climate risk assessments, adaptation, and mitigation.

摘要

人类活动导致大气中温室气体的浓度上升,造成了地球系统的净热量吸收和海洋热含量增加。本文发布了两个国际机构的2021年海洋热含量数据,数据表明:2021年海洋升温持续——成为有现代海洋观测记录以来海洋最暖的一年。相对于2020年,2021年全球海洋上层2000米热含量上升了14 ± 11 ZJ (1 zetta J = 1021 J)(IAP/CAS数据)、以及16 ± 10 ZJ(NOAA/NCEI数据)。海洋长期变暖趋势在南大洋、中低纬度大西洋区域更强,地球系统模式的单个因子强迫实验证明,温室气体增加是主要的驱动因子;而年际尺度的海洋热含量变化主要受到厄尔尼诺-南方涛动模态调控。此外,本文给出了全球7个主要海域的海洋变暖测算,发现地中海、北大西洋、南大洋、北太平洋海区温度均创历史新高。最后,本文提出需要充分将全球和区域海洋变暖的影响纳入气候风险评估、气候变化影响和应对当中。

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Abraham, J., J. R. Stark, and W. J. Minkowycz, 2015: Briefing: Extreme weather: Observed Precipitation Changes in the USA. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 168, 68–70, https://doi.org/10.1680/feng.14.00015.

    Article  Google Scholar 

  • Abraham, J., L. J. Cheng, and M. E. Mann, 2017: Briefing: Future climate projections allow engineering planning. Forensic Engineering, Proceedings of the Institution of Civil Engineers, 170, 54–57. https://doi.org/10.1680/jfoen.17.00002.

    Article  Google Scholar 

  • Abram, N., and Coauthors, 2019: Framing and context of the report. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Intergovernmental Panel on Climate Chang, in press.

  • Argo, 2020: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from https://doi.org/10.17882/42182.

    Google Scholar 

  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9(7), 549–554, https://doi.org/10.1038/Ngeo2731.

    Article  Google Scholar 

  • Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. von Schuckmann et al., Eds., 48–52, https://doi.org/10.1080/1755876X.2021.1946240.

    Google Scholar 

  • Boers, N., 2021: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11, 680–688, https://doi.org/10.1038/s41558-021-01097-4.

    Article  Google Scholar 

  • Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864–869, https://doi.org/10.1038/ngeo362.

    Article  Google Scholar 

  • Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.

  • Cheng, L., Zhu, J., Cowley, R., Boyer, T., & Wijffels, S., 2014: Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations. Journal of Atmospheric and Oceanic Technology, 31(8), 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.

    Article  Google Scholar 

  • Cheng, L. J., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019a: How fast are the oceans warming.. Science, 363, 128–129, https://doi.org/10.1126/science.aav7619.

    Article  Google Scholar 

  • Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    Article  Google Scholar 

  • Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019b: Evolution of ocean heat content related to ENSO. J. Climate, 32(12), 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.

    Article  Google Scholar 

  • Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14–16, https://doi.org/10.1029/2017EO081839.

    Google Scholar 

  • Cornwall, W., 2019: A new ‘Blob’ menaces Pacific ecosystems. Science, 365, 1233, https://doi.org/10.1126/science.365.6459.1233.

    Article  Google Scholar 

  • Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33(18), 7835–7858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    Article  Google Scholar 

  • Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34(23), 9401–9423, https://doi.org/10.1175/JCLI-D-21-0248.1.

    Google Scholar 

  • Emanuel, K., 2021a: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34(1), 57–70, https://doi.org/10.1175/JCLID-20-0367.1.

    Article  Google Scholar 

  • Emanuel, K., 2021b: Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years.. Nat Commun., 12, 7027, https://doi.org/10.1038/s41467-021-27364-8.

    Article  Google Scholar 

  • Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-2020.

    Article  Google Scholar 

  • Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944–12 949, https://doi.org/10.1073/pnas.1813233115.

    Article  Google Scholar 

  • Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys Res. Lett., 48, e2021GL093841, https://doi.org/10.1029/2021GL093841.

    Article  Google Scholar 

  • Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28(2), 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1.

    Article  Google Scholar 

  • Fyfe, J. C., V. V. Kharin, N. Swart, G. M. Flato, M. Sigmond, and N. P. Gillett, 2021: Quantifying the influence of short-term emission reductions on climate. Science Advances, 7(10), eabf7133, https://doi.org/10.1126/sciadv.abf7133.

    Article  Google Scholar 

  • Gao, L. B., S. R. Rintoul, and W. D. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8(1), 58–63, https://doi.org/10.1038/s41558-017-0022-8.

    Article  Google Scholar 

  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295(5558), 1275–1277, https://doi.org/10.1126/science.1065863.

    Article  Google Scholar 

  • Gouretski, V., J. H. Jungclaus, and H. Haak, 2013: Revisiting the Meteor 1925–1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean. Geophys. Res. Lett., 40, 2236–2241, https://doi.org/10.1002/grl.50503.

    Article  Google Scholar 

  • Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72–S77.

    Google Scholar 

  • Hansen, J., M. Sato, P. Kharecha, and K. Von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13 421–13 449, https://doi.org/10.5194/acp-11-13421-2011.

    Article  Google Scholar 

  • Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nature Communications, 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.

    Article  Google Scholar 

  • Hu, S. N., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nature Communications, 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.

    Google Scholar 

  • IPCC, 2019: Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds. In press

    Google Scholar 

  • IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., IPCC.

    Google Scholar 

  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96(8), 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    Article  Google Scholar 

  • Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.

    Article  Google Scholar 

  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445–449, https://doi.org/10.1038/ngeo2438.

    Article  Google Scholar 

  • Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287(5461), 2225–2229, https://doi.org/10.1126/science.287.5461.2225.

    Article  Google Scholar 

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    Article  Google Scholar 

  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    Google Scholar 

  • Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.

    Article  Google Scholar 

  • Li, L. F., M. S. Lozier, and F. L. Li, 2021: Century-long cooling trend in subpolar North Atlantic forced by atmosphere: An alternative explanation. Climate Dyn., in press, https://doi.org/10.1007/s00382-021-06003-4.

    Google Scholar 

  • Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multi-decadal changes of the Upper Indian Ocean heat content during 1965–2016.. J Climate, 31(19), 7863–7884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    Article  Google Scholar 

  • Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the Upper-Indian Ocean thermal variability. J. Climate, 33(17), 7233–7253, https://doi.org/10.1175/JCLI-D-19-0851.1.

    Article  Google Scholar 

  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3), 171–180, https://doi.org/10.1038/Ngeo1391.

    Article  Google Scholar 

  • Piecuch, C. G., 2020: Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 11, 3973, https://doi.org/10.1038/s41467-020-17761-w.

    Article  Google Scholar 

  • Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003.

    Article  Google Scholar 

  • Purich, A., M. H. England, W. J. Cai, A. Sullivan, and P. J. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31(7), 2613–2632, https://doi.org/10.1175/JCLI-D-17-0092.1.

    Article  Google Scholar 

  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1.

    Article  Google Scholar 

  • Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26(16), 6105–6122, https://doi.org/10.1175/JCLI-D-12-00834.1.

    Article  Google Scholar 

  • Rahmstorf, S., J. E, Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.

    Article  Google Scholar 

  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.

    Google Scholar 

  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5(3), 240–245. https://doi.org/10.1038/nclimate2513.

    Article  Google Scholar 

  • Scambos T, J. Abraham, 2015: Briefing: Antarctic ice sheet mass loss and future sea-level rise. Proceedings of the Institution of Civil Engineers — Forensic Engineering, 168, 81–84, https://doi.org/10.1680/feng.14.00014.

    Article  Google Scholar 

  • Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.

    Article  Google Scholar 

  • Schmidtko, S., and G. C. Johnson, 2012: Multi-decadal warming and shoaling of Antarctic intermediate water. J. Climate, 25(1), 207–221, https://doi.org/10.1175/Jcli-D-11-00021.1.

    Article  Google Scholar 

  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multi-decadal warming of Antarctic waters. Science, 346(6214), 1227–1231, https://doi.org/10.1126/science.1256117.

    Article  Google Scholar 

  • Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.

    Article  Google Scholar 

  • Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472–3488, https://doi.org/10.1002/lno.11892.

    Article  Google Scholar 

  • Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2017: Multi-decadal variability and climate shift in the North Atlantic Ocean. Geophys. Res. Lett., 44, 4985–4993, https://doi.org/10.1002/2017GL073644.

    Article  Google Scholar 

  • Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9, 11549, https://doi.org/10.1038/s41598-019-48011-9.

    Article  Google Scholar 

  • Silvy, Y., E. Guilyardi, J. B. Sallée, and P. J. Durack, 2020: Human-induced changes to the global ocean water masses and their time of emergence. Nature Climate Change, 10(11), 1030–1036, https://doi.org/10.1038/s41558-020-0878-x.

    Article  Google Scholar 

  • Simoncelli, S., C. Fratianni, and G. Mattia, 2019: Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. INGV Workshop on Marine Environment, L. Sagnotti et al., Eds., Rome, IVGV, 62–64, https://doi.org/10.13127/misc/51.

    Google Scholar 

  • Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. Copernicus Marine Service Ocean State Report, Issue 2. K. von Schuckmann et al., Eds., s96–s100, https://doi.org/10.1080/1755876X.2018.1489208.

    Google Scholar 

  • Smith, C. J., and P. M. Forster, 2021: Suppressed late-20th Century warming in CMIP6 models explained by forcing and feedbacks. Geophys. Res. Lett., 48, e2021GL094948, https://doi.org/10.1029/2021GL094948.

    Article  Google Scholar 

  • Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580, https://doi.org/10.1038/nature05785.

    Article  Google Scholar 

  • Storto, A., and Coauthors, 2019: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Climate Dyn., 53, 287–312, https://doi.org/10.1007/s00382-018-4585-5.

    Article  Google Scholar 

  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11(11), 836–841, https://doi.org/10.1038/s41561-018-0226-1.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    Article  Google Scholar 

  • Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9), 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. J. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 7495–7505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    Article  Google Scholar 

  • Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.

    Article  Google Scholar 

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.: Oceans, 103, 14 291–14 324, https://doi.org/10.1029/97JC01444.

    Article  Google Scholar 

  • Ummenhofer, C. C., S. Ryan, M. H. England, M. Scheinert, P. Wagner, A. Biastoch, and C. W. Böning, 2020: Late 20th century Indian Ocean heat content gain masked by wind forcing. Geophys. Res. Lett., 47(22), e2020GL088692, https://doi.org/10.1029/2020GL088692.

    Article  Google Scholar 

  • Ummenhofer, C. C., S. A. Murty, J. Sprintall, T. Lee, and N. J. Abram, 2021: Heat and freshwater changes in the Indian Ocean region. Nature Reviews Earth & Environment, 2(8), 525–541, https://doi.org/10.1038/s43017-021-00192-6.

    Article  Google Scholar 

  • United Nations, 2021: Sustainable Development Goals. Available from https://sdgs.un.org/goals.

    Google Scholar 

  • Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6(36), eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    Article  Google Scholar 

  • von Schuckmann, K., E. Holland, P. Haugan, and P. Thomson, 2020a: Ocean science, data, and services for the UN 2030 Sustainable Development Goals. Marine Policy, 121, 104154, https://doi.org/10.1016/j.marpol.2020.104154.

    Article  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2016a: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.

    Article  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2016b: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446.

    Article  Google Scholar 

  • von Schuckmann, K., and Coauthors, 2020b: Heat stored in the Earth system: Where does the energy go.. Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.

    Article  Google Scholar 

  • Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119–5136, https://doi.org/10.1007/s00382-019-04930-x.

    Article  Google Scholar 

  • Wang, X. D., C. Z. Wang, G. J. Han, W. Li, and X. R. Wu, 2014: Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate Dyn., 43, 3351–3366, https://doi.org/10.1007/s00382-014-2109-5.

    Article  Google Scholar 

  • Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nature Climate Change, 6, 116–118, https://doi.org/10.1038/nclimate2924.

    Article  Google Scholar 

  • Xiao, F. A., D. X. Wang, and L. Yang, 2020: Can tropical Pacific winds enhance the footprint of the Interdecadal Pacific Oscillation on the upper-ocean heat content in the South China Sea. J. Climate, 33(10), 4419–4437, https://doi.org/10.1175/JCLI-D-19-0679.1.

    Article  Google Scholar 

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15(8), 864–878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI2.0.CO;2.

    Article  Google Scholar 

  • Yang, L., S. Chen, C. Z. Wang, D. X. Wang, and X. Wang, 2018: Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast. Climate Dyn., 51, 2695–2705, https://doi.org/10.1007/s00382-017-4037-7.

    Article  Google Scholar 

  • Yang, L. N., R. Murtugudde, L. Zhou, and P. Liang, 2020: A potential link between the Southern Ocean warming and the South Indian Ocean heat balance. J. Geophys. Res.: Oceans, 125(12), e2020JC016132, https://doi.org/10.1029/2020JC016132.

    Article  Google Scholar 

Download references

Acknowledgements

The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant No. 42122046, 42076202), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42040402), National Natural Science Foundation of China (Grant No. 42076202), National Key R&D Program of China (Grant No. 2017YFA0603202), and Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (Grant Nos. COMS2019Q01 and COMS2019Q07). NCAR is sponsored by the US National Science Foundation. The efforts of Dr. Fasullo in this work were supported by NASA Award 80NSSC17K0565, and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. The efforts of Dr. Mishonov and Mr. Reagan were partially supported by NOAA (Grant NA14NES4320003 to CISESSMD at the University of Maryland). The IAP/CAS data are available at http://www.ocean.iap.ac.cn/ and https://msdc.qdio.ac.cn/. The NCEI/NOAA data are available at https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content. The historical XBT data along the MX04 line (Genova-Palermo) are available through SeaDataNet - Pan-European infrastructure (http://www.seadatanet.org) for ocean and marine data management. Since 2021, XBT data have been collected in the framework of the MACMAP project funded by the Istituto Nazionale di Geofisica e Vulcanologia in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on their commercial vessels.

Author information

Authors and Affiliations

  1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Lijing Cheng, Jiang Zhu, Zhetao Tan & Viktor Gouretski

  2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China

    Lijing Cheng, Jiang Zhu, Fan Wang, Yuanlong Li, Bin Zhang & Zhetao Tan

  3. University of St. Thomas, School of Engineering, Minnesota, 55105, USA

    John Abraham

  4. National Center for Atmospheric Research, Boulder, Colorado, 80307, USA

    Kevin E. Trenberth & John Fasullo

  5. National Oceanic and Atmospheric Administration, National Centers for Environmental Information, Silver Spring, Maryland, 20910, USA

    Tim Boyer, Ricardo Locarnini, Alexey Mishonov & Jim Reagan

  6. Department of Meteorology & Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA

    Michael E. Mann

  7. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China

    Fan Wang, Yuanlong Li & Bin Zhang

  8. National Marine Environmental Forecasting Center, Ministry of Natural Resources of China, Beijing, 100081, China

    Fujiang Yu, Liying Wan & Xingrong Chen

  9. College of Oceanography, Hohai University, Nanjing, 210098, China

    Xiangzhou Song

  10. National Marine Data and Information Service, Tianjin, 300171, China

    Yulong Liu

  11. Italian National Agency for New Technologies, Energy and Sustainable Economic Development, S. Teresa Research Center, Lerici, 19032, Italy

    Franco Reseghetti

  12. Istituto Nazionale di Geofisica e Vulcanologia, Sede di Bologna, Bologna, 40128, Italy

    Simona Simoncelli

  13. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China

    Gengxin Chen

  14. ESSIC/CISESS-MD, University of Maryland, College Park, MD, 20742, USA

    Alexey Mishonov

Authors
  1. Lijing Cheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. John Abraham
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kevin E. Trenberth
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. John Fasullo
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Tim Boyer
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Michael E. Mann
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Jiang Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Fan Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Ricardo Locarnini
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Yuanlong Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Bin Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Zhetao Tan
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Fujiang Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. Liying Wan
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. Xingrong Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. Xiangzhou Song
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. Yulong Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. Franco Reseghetti
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. Simona Simoncelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. Viktor Gouretski
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. Gengxin Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. Alexey Mishonov
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. Jim Reagan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Lijing Cheng.

Additional information

Article Highlights

• The world ocean, in 2021, was the hottest ever recorded by humans.

• The warming pattern is mainly attributed to increased anthropogenic greenhouse gas concentrations, offset by the impact of aerosols.

• Ocean warming has far-reaching consequences and should be incorporated into climate risk assessments, adaptation, and mitigation.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author (s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Abraham, J., Trenberth, K.E. et al. Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions. Adv. Atmos. Sci. 39, 373–385 (2022). https://doi.org/10.1007/s00376-022-1461-3

Download citation

  • Received: 19 December 2021

  • Revised: 08 January 2022

  • Accepted: 10 January 2022

  • Published: 11 January 2022

  • Issue Date: March 2022

  • DOI: https://doi.org/10.1007/s00376-022-1461-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • La Niña
  • ocean heat
  • ocean warming
  • attribution
  • observation

关键词

  • 拉尼娜
  • 海洋热含量
  • 海洋变暖
  • 归因
  • 观测
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.