Abraham, J., J. R. Stark, and W. J. Minkowycz, 2015: Briefing: Extreme weather: Observed Precipitation Changes in the USA. Proceedings of the Institution of Civil Engineers-Forensic Engineering, 168, 68–70, https://doi.org/10.1680/feng.14.00015.
Google Scholar
Abraham, J., L. J. Cheng, and M. E. Mann, 2017: Briefing: Future climate projections allow engineering planning. Forensic Engineering, Proceedings of the Institution of Civil Engineers, 170, 54–57. https://doi.org/10.1680/jfoen.17.00002.
Google Scholar
Abram, N., and Coauthors, 2019: Framing and context of the report. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., Intergovernmental Panel on Climate Chang, in press.
Argo, 2020: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from https://doi.org/10.17882/42182.
Google Scholar
Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nature Geoscience, 9(7), 549–554, https://doi.org/10.1038/Ngeo2731.
Google Scholar
Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. von Schuckmann et al., Eds., 48–52, https://doi.org/10.1080/1755876X.2021.1946240.
Google Scholar
Boers, N., 2021: Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change, 11, 680–688, https://doi.org/10.1038/s41558-021-01097-4.
Google Scholar
Böning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nature Geoscience, 1(12), 864–869, https://doi.org/10.1038/ngeo362.
Google Scholar
Boyer, T. P., and Coauthors, 2018: World Ocean Database 2018. A. V. Mishonov, Technical Editor, NOAA Atlas NESDIS 87.
Cheng, L., Zhu, J., Cowley, R., Boyer, T., & Wijffels, S., 2014: Time, Probe Type, and Temperature Variable Bias Corrections to Historical Expendable Bathythermograph Observations. Journal of Atmospheric and Oceanic Technology, 31(8), 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Google Scholar
Cheng, L. J., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019a: How fast are the oceans warming.. Science, 363, 128–129, https://doi.org/10.1126/science.aav7619.
Google Scholar
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Google Scholar
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019b: Evolution of ocean heat content related to ENSO. J. Climate, 32(12), 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Google Scholar
Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14–16, https://doi.org/10.1029/2017EO081839.
Google Scholar
Cornwall, W., 2019: A new ‘Blob’ menaces Pacific ecosystems. Science, 365, 1233, https://doi.org/10.1126/science.365.6459.1233.
Google Scholar
Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33(18), 7835–7858, https://doi.org/10.1175/JCLI-D-20-0123.1.
Google Scholar
Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34(23), 9401–9423, https://doi.org/10.1175/JCLI-D-21-0248.1.
Google Scholar
Emanuel, K., 2021a: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34(1), 57–70, https://doi.org/10.1175/JCLID-20-0367.1.
Google Scholar
Emanuel, K., 2021b: Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years.. Nat Commun., 12, 7027, https://doi.org/10.1038/s41467-021-27364-8.
Google Scholar
Fasullo, J. T., 2020: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-2020.
Google Scholar
Fasullo, J. T., and R. S. Nerem, 2018: Altimeter-era emergence of the patterns of forced sea-level rise in climate models and implications for the future. Proceedings of the National Academy of Sciences of the United States of America, 115, 12 944–12 949, https://doi.org/10.1073/pnas.1813233115.
Google Scholar
Fasullo, J. T., N. Rosenbloom, R. R. Buchholz, G. Danabasoglu, D. M. Lawrence, and J.-F. Lamarque, 2021: Coupled climate responses to recent Australian wildfire and COVID-19 emissions anomalies estimated in CESM2. Geophys Res. Lett., 48, e2021GL093841, https://doi.org/10.1029/2021GL093841.
Google Scholar
Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton, 2015: Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Climate, 28(2), 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1.
Google Scholar
Fyfe, J. C., V. V. Kharin, N. Swart, G. M. Flato, M. Sigmond, and N. P. Gillett, 2021: Quantifying the influence of short-term emission reductions on climate. Science Advances, 7(10), eabf7133, https://doi.org/10.1126/sciadv.abf7133.
Google Scholar
Gao, L. B., S. R. Rintoul, and W. D. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nature Climate Change, 8(1), 58–63, https://doi.org/10.1038/s41558-017-0022-8.
Google Scholar
Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295(5558), 1275–1277, https://doi.org/10.1126/science.1065863.
Google Scholar
Gouretski, V., J. H. Jungclaus, and H. Haak, 2013: Revisiting the Meteor 1925–1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean. Geophys. Res. Lett., 40, 2236–2241, https://doi.org/10.1002/grl.50503.
Google Scholar
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72–S77.
Google Scholar
Hansen, J., M. Sato, P. Kharecha, and K. Von Schuckmann, 2011: Earth’s energy imbalance and implications. Atmospheric Chemistry and Physics, 11, 13 421–13 449, https://doi.org/10.5194/acp-11-13421-2011.
Google Scholar
Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nature Communications, 10, 2624, https://doi.org/10.1038/s41467-019-10206-z.
Google Scholar
Hu, S. N., and A. V. Fedorov, 2020: Indian Ocean warming as a driver of the North Atlantic warming hole. Nature Communications, 11, 4785, https://doi.org/10.1038/s41467-020-18522-5.
Google Scholar
IPCC, 2013: Climate Change 2013: The physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
Google Scholar
IPCC, 2019: Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds. In press
Google Scholar
IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., IPCC.
Google Scholar
Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96(8), 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.
Google Scholar
Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh, 2020: Multiple drivers of the North Atlantic warming hole. Nature Climate Change, 10, 667–671, https://doi.org/10.1038/s41558-020-0819-8.
Google Scholar
Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8(6), 445–449, https://doi.org/10.1038/ngeo2438.
Google Scholar
Levitus, S., J. I. Antonov, T. P. Boyer, and C. Stephens, 2000: Warming of the world ocean. Science, 287(5461), 2225–2229, https://doi.org/10.1126/science.287.5461.2225.
Google Scholar
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.
Google Scholar
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Google Scholar
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.
Google Scholar
Li, L. F., M. S. Lozier, and F. L. Li, 2021: Century-long cooling trend in subpolar North Atlantic forced by atmosphere: An alternative explanation. Climate Dyn., in press, https://doi.org/10.1007/s00382-021-06003-4.
Google Scholar
Li, Y. L., W. Q. Han, A. X. Hu, G. A. Meehl, and F. Wang, 2018: Multi-decadal changes of the Upper Indian Ocean heat content during 1965–2016.. J Climate, 31(19), 7863–7884, https://doi.org/10.1175/JCLI-D-18-0116.1.
Google Scholar
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the Upper-Indian Ocean thermal variability. J. Climate, 33(17), 7233–7253, https://doi.org/10.1175/JCLI-D-19-0851.1.
Google Scholar
Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5(3), 171–180, https://doi.org/10.1038/Ngeo1391.
Google Scholar
Piecuch, C. G., 2020: Likely weakening of the Florida Current during the past century revealed by sea-level observations. Nature Communications, 11, 3973, https://doi.org/10.1038/s41467-020-17761-w.
Google Scholar
Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003.
Google Scholar
Purich, A., M. H. England, W. J. Cai, A. Sullivan, and P. J. Durack, 2018: Impacts of broad-scale surface freshening of the Southern Ocean in a coupled climate model. J. Climate, 31(7), 2613–2632, https://doi.org/10.1175/JCLI-D-17-0092.1.
Google Scholar
Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1.
Google Scholar
Purkey, S. G., and G. C. Johnson, 2013: Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Climate, 26(16), 6105–6122, https://doi.org/10.1175/JCLI-D-12-00834.1.
Google Scholar
Rahmstorf, S., J. E, Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475–480, https://doi.org/10.1038/nclimate2554.
Google Scholar
Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.
Google Scholar
Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nature Climate Change, 5(3), 240–245. https://doi.org/10.1038/nclimate2513.
Google Scholar
Scambos T, J. Abraham, 2015: Briefing: Antarctic ice sheet mass loss and future sea-level rise. Proceedings of the Institution of Civil Engineers — Forensic Engineering, 168, 81–84, https://doi.org/10.1680/feng.14.00014.
Google Scholar
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.
Google Scholar
Schmidtko, S., and G. C. Johnson, 2012: Multi-decadal warming and shoaling of Antarctic intermediate water. J. Climate, 25(1), 207–221, https://doi.org/10.1175/Jcli-D-11-00021.1.
Google Scholar
Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multi-decadal warming of Antarctic waters. Science, 346(6214), 1227–1231, https://doi.org/10.1126/science.1256117.
Google Scholar
Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.
Google Scholar
Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472–3488, https://doi.org/10.1002/lno.11892.
Google Scholar
Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2017: Multi-decadal variability and climate shift in the North Atlantic Ocean. Geophys. Res. Lett., 44, 4985–4993, https://doi.org/10.1002/2017GL073644.
Google Scholar
Seidov, D., A. Mishonov, J. Reagan, and R. Parsons, 2019: Resilience of the Gulf Stream path on decadal and longer timescales. Scientific Reports, 9, 11549, https://doi.org/10.1038/s41598-019-48011-9.
Google Scholar
Silvy, Y., E. Guilyardi, J. B. Sallée, and P. J. Durack, 2020: Human-induced changes to the global ocean water masses and their time of emergence. Nature Climate Change, 10(11), 1030–1036, https://doi.org/10.1038/s41558-020-0878-x.
Google Scholar
Simoncelli, S., C. Fratianni, and G. Mattia, 2019: Monitoring and long-term assessment of the Mediterranean Sea physical state through ocean reanalyses. INGV Workshop on Marine Environment, L. Sagnotti et al., Eds., Rome, IVGV, 62–64, https://doi.org/10.13127/misc/51.
Google Scholar
Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. Copernicus Marine Service Ocean State Report, Issue 2. K. von Schuckmann et al., Eds., s96–s100, https://doi.org/10.1080/1755876X.2018.1489208.
Google Scholar
Smith, C. J., and P. M. Forster, 2021: Suppressed late-20th Century warming in CMIP6 models explained by forcing and feedbacks. Geophys. Res. Lett., 48, e2021GL094948, https://doi.org/10.1029/2021GL094948.
Google Scholar
Sriver, R. L., and M. Huber, 2007: Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447, 577–580, https://doi.org/10.1038/nature05785.
Google Scholar
Storto, A., and Coauthors, 2019: The added value of the multi-system spread information for ocean heat content and steric sea level investigations in the CMEMS GREP ensemble reanalysis product. Climate Dyn., 53, 287–312, https://doi.org/10.1007/s00382-018-4585-5.
Google Scholar
Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 11(11), 836–841, https://doi.org/10.1038/s41561-018-0226-1.
Google Scholar
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Google Scholar
Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9), 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205.
Google Scholar
Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. J. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 7495–7505, https://doi.org/10.1175/JCLI-D-16-0339.1.
Google Scholar
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.
Google Scholar
Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.: Oceans, 103, 14 291–14 324, https://doi.org/10.1029/97JC01444.
Google Scholar
Ummenhofer, C. C., S. Ryan, M. H. England, M. Scheinert, P. Wagner, A. Biastoch, and C. W. Böning, 2020: Late 20th century Indian Ocean heat content gain masked by wind forcing. Geophys. Res. Lett., 47(22), e2020GL088692, https://doi.org/10.1029/2020GL088692.
Google Scholar
Ummenhofer, C. C., S. A. Murty, J. Sprintall, T. Lee, and N. J. Abram, 2021: Heat and freshwater changes in the Indian Ocean region. Nature Reviews Earth & Environment, 2(8), 525–541, https://doi.org/10.1038/s43017-021-00192-6.
Google Scholar
United Nations, 2021: Sustainable Development Goals. Available from https://sdgs.un.org/goals.
Google Scholar
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6(36), eabc1151, https://doi.org/10.1126/sciadv.abc1151.
Google Scholar
von Schuckmann, K., E. Holland, P. Haugan, and P. Thomson, 2020a: Ocean science, data, and services for the UN 2030 Sustainable Development Goals. Marine Policy, 121, 104154, https://doi.org/10.1016/j.marpol.2020.104154.
Google Scholar
von Schuckmann, K., and Coauthors, 2016a: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.
Google Scholar
von Schuckmann, K., and Coauthors, 2016b: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446.
Google Scholar
von Schuckmann, K., and Coauthors, 2020b: Heat stored in the Earth system: Where does the energy go.. Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.
Google Scholar
Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119–5136, https://doi.org/10.1007/s00382-019-04930-x.
Google Scholar
Wang, X. D., C. Z. Wang, G. J. Han, W. Li, and X. R. Wu, 2014: Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea. Climate Dyn., 43, 3351–3366, https://doi.org/10.1007/s00382-014-2109-5.
Google Scholar
Wijffels, S., D. Roemmich, D. Monselesan, J. Church, and J. Gilson, 2016: Ocean temperatures chronicle the ongoing warming of Earth. Nature Climate Change, 6, 116–118, https://doi.org/10.1038/nclimate2924.
Google Scholar
Xiao, F. A., D. X. Wang, and L. Yang, 2020: Can tropical Pacific winds enhance the footprint of the Interdecadal Pacific Oscillation on the upper-ocean heat content in the South China Sea. J. Climate, 33(10), 4419–4437, https://doi.org/10.1175/JCLI-D-19-0679.1.
Google Scholar
Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15(8), 864–878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI2.0.CO;2.
Google Scholar
Yang, L., S. Chen, C. Z. Wang, D. X. Wang, and X. Wang, 2018: Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean-Western Pacific on the variability of typhoon landfall on the China coast. Climate Dyn., 51, 2695–2705, https://doi.org/10.1007/s00382-017-4037-7.
Google Scholar
Yang, L. N., R. Murtugudde, L. Zhou, and P. Liang, 2020: A potential link between the Southern Ocean warming and the South Indian Ocean heat balance. J. Geophys. Res.: Oceans, 125(12), e2020JC016132, https://doi.org/10.1029/2020JC016132.
Google Scholar