Bender, M. A., T. P. Marchok, C. R. Sampson, J. A. Knaff, and M. J. Morin, 2017: Impact of storm size on prediction of storm track and intensity using the 2016 operational GFDL hurricane model. Wea. Forecasting, 32(4), 1491–1508, https://doi.org/10.1175/WAF-D-16-0220.1.
Article
Google Scholar
Carrasco, C. A., C. W. Landsea, and Y. L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29(3), 582–590, https://doi.org/10.1175/Waf-D-13-00092.1.
Article
Google Scholar
Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140(3), 811–824, https://doi.org/10.1175/Mwr-D-10-05062.1.
Article
Google Scholar
Chan, K. T. F., and J. C. L. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141(11), 3985–4007, https://doi.org/10.1175/Mwr-D-12-00204.1.
Article
Google Scholar
Chan, K. T. F., and J. C. L. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140(684), 2235–2248, https://doi.org/10.1002/qj.2292.
Article
Google Scholar
Chan, K. T. F., and J. C. L. Chan, 2018: The outer-core wind structure of tropical cyclones. J. Meteor. Soc. Japan, 96(4), 297–315, https://doi.org/10.2151/jmsj.2018-042.
Article
Google Scholar
Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37(18), L18816, https://doi.org/10.1029/2010GL044558.
Article
Google Scholar
Chavas, D. R., N. Lin, W. B. Dong, and Y. L. Lin, 2016: Observed tropical cyclone size revisited. J. Climate, 29(8), 2923–2939, https://doi.org/10.1175/JCLI-D-15-0731.1.
Article
Google Scholar
Chen, G. H., C. C. Wu, and Y. H. Huang, 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75(1), 297–326, https://doi.org/10.1175/JAS-D-1117-0122.1171.
Article
Google Scholar
Cocks, S. B., and W. M. Gray, 2002: Variability of the outer wind profiles of Western North Pacific Typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130(8), 1989–2005, https://doi.org/10.1175/1520-0493(2002)130<1989:VOTOWP>2.0.CO;2.
Article
Google Scholar
DeMaria, M., and J. D. Pickle, 1988: A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci., 45(10), 1542–1554, https://doi.org/10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2.
Article
Google Scholar
DeMaria, M., and J. Kaplan, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North Pacific Basins. Wea. Forecasting, 14(3), 326–337, https://doi.org/10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.
Article
Google Scholar
Elsberry, R. L., and R. A. Jeffries, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124(7), 1374–1387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.
Article
Google Scholar
Guo, X., and Z. M. Tan, 2017: Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett., 44(9), 4324–4331, https://doi.org/10.1002/2017gl073680.
Article
Google Scholar
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049, https://doi.org/10.1002/qj.3803.
Article
Google Scholar
Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137(10), 3294–3315, https://doi.org/10.1175/2009mwr2679.1.
Article
Google Scholar
Holland, G. J., 1983: Angular momentum transports in tropical cyclones. Quart. J. Roy. Meteor. Soc., 109(459), 187–209, https://doi.org/10.1002/qj.49710945909.
Article
Google Scholar
Irish, J. L., D. T. Resio, and J. J. Ratcliff, 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38(9), 2003–2013, https://doi.org/10.1175/2008JPO3727.1.
Article
Google Scholar
Kim, D., C. H. Ho, D. S. R. Park, J. C. L. Chan, and Y. Jung, 2018: The relationship between tropical cyclone rainfall area and environmental conditions over the subtropical oceans. J. Climate, 31(12), 4605–4616, https://doi.org/10.1175/JCLI-D-17-0712.1.
Article
Google Scholar
Kim, D., C. H. Ho, D. S. Park, and J. Kim, 2019: Influence of vertical wind shear on wind- and rainfall areas of tropical cyclones making landfall over South Korea. PLoS One, 14, e0209885, https://doi.org/10.1371/journal.pone.0209885.
Article
Google Scholar
Kimball, S. K., and J. L. Evans, 2002: Idealized numerical simulations of hurricane—trough interaction. Mon. Wea. Rev., 130(9), 2210–2227, https://doi.org/10.1175/1520-0493(2002)130<2210:INSOHT>2.0.CO;2.
Article
Google Scholar
Knaff, J. A., C. Guard, J. Kossin, T. Marchok, C. Sampson, T. Smith, and N. Surgi, 2006: Operational Guidance and Skill in Forecasting Structure Change. Proc. WMO Int. Workshop on Tropical Cyclones-VI, San Juan, Costa Rica, WMO, 160–184. [Available on line at http://severe.worldweather.org/iwtc/document/Topic_1_5_John_Knaff.pdf]
Google Scholar
Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22(4), 781–791, https://doi.org/10.1175/WAF1026.1.
Article
Google Scholar
Knaff, J. A., S. A. Seseske, M. Demaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503–2510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.
Article
Google Scholar
Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27(1), 455–476, https://doi.org/10.1175/JCLI-D-13-00096.1.
Article
Google Scholar
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121(7), 2030–2045, https://doi.org/10.1175/1520-0493(1993)121<2030:aisohm>2.0.co;2.
Article
Google Scholar
Lee, C. S., K. K. W. Cheung, W. T. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the Western North Pacific. Mon. Wea. Rev., 138(8), 3207–3223, https://doi.org/10.1175/2010mwr3023.1.
Article
Google Scholar
Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74(1), 203–227, https://doi.org/10.1175/JAS-D-16-0123.1.
Article
Google Scholar
Li, T., X. Y. Ge, M. Peng, and W. Wang, 2012: Dependence of tropical cyclone intensification on the coriolis parameter. Tropical Cyclone Research and Review, 1, 242–253, https://doi.org/10.6057/2012TCRR02.04.
Google Scholar
Lin, Y. L., M. Zhao, and M. H. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nature Communications, 6, 6591, https://doi.org/10.1038/ncomms7591.
Article
Google Scholar
Martinez, J., C. C. Nam, and M. M. Bell, 2020: On the contributions of incipient vortex circulation and environmental moisture to tropical cyclone expansion. J. Geophys. Res.: Atmos., 125(21), e2020JD033324, https://doi.org/10.1029/2020JD033324.
Google Scholar
Matyas, C. J., 2010: Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteorol. Atmos. Phys., 106(3–4), 135–148, https://doi.org/10.1007/s00703-009-0056-1.
Article
Google Scholar
Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112(7), 1408–1418, https://doi.org/10.1175/1520-0493(1984)112<1408:ACOLAS>2:0.CO;2.
Article
Google Scholar
Musgrave, K. D., R. K. Taft, J. L. Vigh, B. D. McNoldy, and W. H. Schubert, 2012: Time evolution of the intensity and size of tropical cyclones. Journal of Advances in Modeling Earth Systems, 4(3), M08001, https://doi.org/10.1029/2011ms000104.
Article
Google Scholar
Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118(4), 918–938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.
Article
Google Scholar
Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88(4), 513–526, https://doi.org/10.1175/BAMS-88-4-513.
Article
Google Scholar
Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991, https://doi.org/10.1175/MWR-D-12-00357.1.
Article
Google Scholar
Smith, R. K., M. T. Montgomery, and N. van Sang, 2009: Tropical cyclone spin — up revisited. Quart. J. Roy. Meteor. Soc., 135, 1321–1335, https://doi.org/10.1002/qj.428.
Article
Google Scholar
Smith, R. K., C. W. Schmidt, and M. T. Montgomery, 2011: An investigation of rotational influences on tropical-cyclone size and intensity. Quart. J. Roy. Meteor. Soc., 137(660), 1841–1855, https://doi.org/10.1002/qj.862.
Article
Google Scholar
Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 1783–1804, https://doi.org/10.1175/JAS-D-14-0044.1.
Article
Google Scholar
Song, J. J., and P. J. Klotzbach, 2016: Wind structure discrepancies between two best-track data sets for Western North Pacific tropical cyclones. Mon. Wea. Rev., 144(12), 4533–4551, https://doi.org/10.1175/MWR-D-16-0163.1.
Article
Google Scholar
Song, J. J., Y. H. Duan, and P. J. Klotzbach, 2020: Revisiting the relationship between tropical cyclone size and intensity over the Western North Pacific. Geophys. Res. Lett., 47(13), e2020GL088217, https://doi.org/10.1029/2020gl088217.
Article
Google Scholar
Sun, Y., Z. Zhong, L. Yi, Y. Ha, and Y. M. Sun, 2014: The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity. J. Geophys. Res.: Atmos., 119(5), 2193–2208, https://doi.org/10.1002/2013JD021354.
Article
Google Scholar
Tang, B, and K. Emanuel, 2010: Midlevel Ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67(6), 1817–1830, https://doi.org/10.1175/2010JAS3318.1.
Article
Google Scholar
Tao, D. D., and F. Q. Zhang, 2019: Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: Sensitivity to vertical wind shear. Mon. Wea. Rev., 147(4), 1171–1191, https://doi.org/10.1175/mwrd-18-0173.1.
Article
Google Scholar
Tsuji, H., H. Itoh, and K. Nakajima, 2016: Mechanism governing the size change of tropical cyclone-like vortices. J. Meteor. Soc. Japan, 94(3), 219–236, https://doi.org/10.2151/jmsj.2016-012.
Article
Google Scholar
Wang, S., and R. Toumi, 2018: A historical analysis of the mature stage of tropical cyclones. International Journal of Climatology, 38(5), 2490–2505, https://doi.org/10.1022/joc.5374.
Article
Google Scholar
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66(5), 1250–1273, https://doi.org/10.1175/2008JAS2737.1.
Article
Google Scholar
Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116(5), 1032–1043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.
Article
Google Scholar
Wu, L. G., W. Tian, Q. Y. Liu, J. Cao, and J. A. Knaff, 2015: Implications of the observed relationship between tropical cyclone size and intensity over the Western North Pacific. J. Climate, 28(24), 9501–9506, https://doi.org/10.1175/Jcli-D-15-0628.1.
Article
Google Scholar
Xu, J., and Y. Q. Wang, 2010a: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138(11), 4135–4157, https://doi.org/10.1175/2010mwr3335.1.
Article
Google Scholar
Xu, J., and Y. Q. Wang, 2010b: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67(6), 1831–1852, https://doi.org/10.1175/2010jas3387.1.
Article
Google Scholar
Xu, J., and Y. Q. Wang, 2018a: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the Western North Pacific. Wea. Forecasting, 33(2), 523–537, https://doi.org/10.1175/waf-d-17-0095.1.
Article
Google Scholar
Xu, J., and Y. Q. Wang, 2018b: Effect of the initial vortex structure on intensification of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 96, 111–126, https://doi.org/10.2151/jmsj.2018-014.
Article
Google Scholar