Skip to main content

Advertisement

SpringerLink
Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades
Download PDF
Download PDF
  • Data Description Article
  • Open Access
  • Published: 14 May 2022

Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades

  • Xiaojuan Zhang1,2,
  • Fei Zheng1,3,
  • Jiang Zhu1,2 &
  • …
  • Xingrong Chen4 

Advances in Atmospheric Sciences volume 39, pages 1579–1587 (2022)Cite this article

  • 384 Accesses

  • 28 Altmetric

  • Metrics details

Abstract

Marine heatwaves (MHWs) are prolonged high-temperature extreme events in the ocean that can be devastating to marine life and seriously impact climate systems and economies. This paper describes the accessibility, content, characteristics, and potential applications of an MHW dataset to facilitate its use in scientific research. Daily intensities of global MHWs from 1982 to 2020 were analyzed using gridded SST data sourced from the National Oceanic and Atmospheric Administration (NOAA) Optimum Interpolation (OI) SST V2 high-resolution (0.25°) dataset. The analysis shows a linear increase in the frequency of MHWs in most ocean regions of the world as well as significant interdecadal changes. This data product can be used as a basic dataset to study the seasonal to decadal changes in extreme ocean events and explore the effects of global warming on the surface layers of oceans during the last 40 years.

摘 要

海洋热浪(MHW)是海洋中持续的高温极端事件,会对海洋生物的生存等造成毁灭性影响,并严重影响气候系统和社会经济。本文介绍了全球高分辨率海洋热浪数据库的建立、内容、潜在应用。该数据库是基于NOAA日平均海表温度OISST_V2观测资料,通过改进对海洋热浪关键特征参数的定义,进而建立了1982-2020年全球0.25度海洋热浪日数据。该数据集明确体现了海洋热浪的爆发频次在全球大多数海域显著增长,并具有年际-年代际变化特征。该数据产品可为研究近40年来海洋极端事件季节至年代际变化、探索全球变暖对海洋表层影响提供基础数据。

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Data availability statement and sharing policy. The data that support the findings of this study are openly available in the Science Data Bank at https://www.scidb.cn/en/s/nqauYn (doi: https://doi.org/10.11922/sciencedb.00872). Users are encouraged to download and share the datasets. All the datasets are free.

References

  • Amaya, D. J., A. J. Miller, S. P. Xie, and Y. Kosaka, 2020: Physical drivers of the summer 2019 North Pacific marine heatwave. Nature Communications, 11(1), 1903, https://doi.org/10.1038/s41467-020-15820-w.

    Article  Google Scholar 

  • Arafeh-Dalmau, N., G. Montaño-Moctezuma, J. A. Martínez, R. Beas-Luna, D. S. Schoeman, and G. Torres-Moye, 2019: Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Frontiers in Marine Science, 6, 499, https://doi.org/10.3389/fmars.2019.00499.

    Article  Google Scholar 

  • Benthuysen, J. A., E. C. J. Oliver, M. Feng, and A. G. Marshall, 2018: Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res., 123(2), 1301–1326, https://doi.org/10.1002/2017JC013326.

    Article  Google Scholar 

  • Berkelmans, R., G. De’Ath, S. Kininmonth, and W. J. Skirving, 2004: A comparison of the 1998 and 2002 coral bleaching events on the great barrier reef: Spatial correlation, patterns, and predictions. Coral Reefs, 23(1), 74–83, https://doi.org/10.1007/s00338-003-0353-y.

    Article  Google Scholar 

  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42(9), 3414–3420, https://doi.org/10.1002/2015GL063306.

    Article  Google Scholar 

  • Cheung, W. W. L., and T. L. Frölicher, 2020: Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Scientific Reports, 10(1), 6678, https://doi.org/10.1038/s41598-020-63650-z.

    Article  Google Scholar 

  • Coleman, M. A., A. J. P. Minne, S. Vranken, and T. Wernberg, 2020: Genetic tropicalisation following a marine heatwave. Scientific Reports, 10(1), 12726, https://doi.org/10.1038/s41598-020-69665-w.

    Article  Google Scholar 

  • Dalton, S. J., and Coauthors, 2020: Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Science of the Total Environment, 715, 136951, https://doi.org/10.1016/j.scitotenv.2020.136951.

    Article  Google Scholar 

  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6(3), 1042–1047, https://doi.org/10.1038/nclimate3082.

    Article  Google Scholar 

  • Frölicher, T. L., and C. Laufkötter, 2018: Emerging risks from marine heat waves. Nature Communications, 9(1), 650, https://doi.org/10.1038/s41467-018-03163-6.

    Article  Google Scholar 

  • Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560(7718), 360–364, https://doi.org/10.1038/s41586-018-0383-9.

    Article  Google Scholar 

  • Garrabou, J., and Coauthors, 2009: Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology, 15(5), 1090–1103, https://doi.org/10.1111/j.1365-2486.2008.01823.x.

    Article  Google Scholar 

  • Gupta, A. S., and Coauthors, 2020: Drivers and impacts of the most extreme marine heatwave events. Scientific Reports, 10(1), 19359, https://doi.org/10.1038/s41598-020-75445-3.

    Article  Google Scholar 

  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014.

    Article  Google Scholar 

  • Holbrook, N. J., and Coauthors, 2019: A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1), 2624, https://doi.org/10.1038/s41467-019-10206-z.

    Article  Google Scholar 

  • Hu, S. Y., L. J. Zhang, and S. M. Qian, 2020: Marine heatwaves in the arctic region: Variation in different ice covers. Geophys. Res. Lett., 47, e2020GL089329, https://doi.org/10.1029/2020GL089329.

    Google Scholar 

  • Hu, Z. Z., A. Kumar, B. Jha, J. S. Zhu, and B. H. Huang, 2017: Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Climate, 30(2), 689–702, https://doi.org/10.1175/JCLI-D-16-0348.1.

    Article  Google Scholar 

  • Jentsch, A., J. Kreyling, and C. Beierkuhnlein, 2007: A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment, 5(7), 365–374, https://doi.org/10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2.

    Article  Google Scholar 

  • Laufkötter, C., J. Zscheischler, and T. L. Frölicher, 2020: High-impact marine heatwaves attributable to human-induced global warming. Science, 369(6511), 1621–1625, https://doi.org/10.1126/science.aba0690.

    Article  Google Scholar 

  • Marbà, N., G. Jordà, S. Agustí, C. Girard, and C. M. Duarte, 2015: Footprints of climate change on mediterranean sea biota. Frontiers in Marine Science, 2, 56, https://doi.org/10.3389/fmars.2015.00056.

    Article  Google Scholar 

  • Oliver, E. C. J., J. A. Benthuysen, N. L. Bindoff, A. J. Hobday, N. J. Holbrook, C. N. Mundy, and S. E. Perkins-Kirkpatrick, 2017: The unprecedented 2015/16 Tasman Sea marine heatwave. Nature Communications, 8, 16101, https://doi.org/10.1038/ncomms16101.

    Article  Google Scholar 

  • Oliver, E. C. J., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nature Communications, 9(1), 1324, https://doi.org/10.1038/s41467-018-03732-9.

    Article  Google Scholar 

  • Pearce, A. F., and M. Feng, 2013: The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst., 111–112, 139–156, https://doi.org/10.1016/j.jmarsys.2012.10.009.

    Article  Google Scholar 

  • Piatt, J. F., and Coauthors, 2020: Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One, 15(1), e0226087, https://doi.org/10.1371/journal.pone.0226087.

    Article  Google Scholar 

  • Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20(22), 5473–5496, https://doi.org/10.1175/2007JCLI1824.1.

    Article  Google Scholar 

  • Scannell, H. A., A. J. Pershing, M. A. Alexander, A. C. Thomas, and K. E. Mills, 2016: Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett., 43(5), 2069–2076, https://doi.org/10.1002/2015GL067308.

    Article  Google Scholar 

  • Smale, D. A., and Coauthors, 2019: Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1.

    Article  Google Scholar 

  • Smith, K. A., C. E. Dowling, and J. Brown, 2019: Simmered then boiled: Multi-decadal poleward shift in distribution by a temperate fish accelerates during marine heatwave. Frontiers in Marine Science, 6, 407, https://doi.org/10.3389/fmars.2019.00407.

    Article  Google Scholar 

  • Sorte, C. J. B., A. Fuller, and M. E. S. Bracken, 2010: Impacts of a simulated heat wave on composition of a marine community. Oikos, 119(12), 1909–1918, https://doi.org/10.1111/j.1600-0706.2010.18663.x.

    Article  Google Scholar 

  • Varela, R., L. Rodríguez-Díaz, M. de Castro, and M. Gómez-Gesteira, 2021: Influence of Eastern Upwelling systems on marine heatwaves occurrence. Global and Planetary Change, 196, 103379, https://doi.org/10.1016/j.gloplacha.2020.103379.

    Article  Google Scholar 

  • Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Climate, 9(1), 161–188, https://doi.org/10.1175/1520-0442(1996)009<0161:FALMFV>2.0.CO;2.

    Article  Google Scholar 

  • Wei, X. Y., K. Y. Li, T. Kilpatrick, M. Y. Wang, and S. P. Xie, 2021: Large-scale conditions for the record-setting southern California marine heatwave of august 2018. Geophys. Res. Lett., 48(7), e2020GL091803, https://doi.org/10.1029/2020GL091803.

    Article  Google Scholar 

  • Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. de Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3(1), 78–82, https://doi.org/10.1038/nclimate1627.

    Article  Google Scholar 

  • Xiao, F. A., L. Zeng, Q. Y. Liu, W. Zhou, and D. X. Wang, 2018: Extreme subsurface warm events in the South China Sea during 1998/99 and 2006/07: Observations and mechanisms. Climate Dyn., 50(1–2), 115–128, https://doi.org/10.1007/s00382-017-3588-y.

    Article  Google Scholar 

  • Xiao, F. A., D. X. Wang, L. L. Zeng, Q. Y. Liu, and W. Zhou, 2019: Contrasting changes in the sea surface temperature and upper ocean heat content in the South China Sea during recent decades. Climate Dyn., 53, 1597–1612, https://doi.org/10.1007/s00382-019-04697-1.

    Article  Google Scholar 

  • Xiao, F. A., D. X. Wang, and M. Y. T. Leung, 2020: Early and extreme warming in the South China Sea during 2015/2016: Role of an unusual Indian Ocean dipole event. Geophy. Res. Lett., 47(17), e2020GL089936, https://doi.org/10.1029/2020GL089936.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-DQC010), the National Natural Science Foundation of China (Grant No. 41876012), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42000000), and the National Key R&D Program of China 2018YFB0505000. NOAA High-Resolution SST data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. The authors wish to thank two anonymous reviewers for their very helpful comments and suggestions.

Author information

Authors and Affiliations

  1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Xiaojuan Zhang, Fei Zheng & Jiang Zhu

  2. University of Chinese Academy of Sciences, Beijing, 100049, China

    Xiaojuan Zhang & Jiang Zhu

  3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China

    Fei Zheng

  4. National Marine Environmental Forecasting Center, Beijing, 100081, China

    Xingrong Chen

Authors
  1. Xiaojuan Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fei Zheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jiang Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Xingrong Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Fei Zheng.

Ethics declarations

Disclosure statement. No potential conflicts of interest are reported by the authors.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zheng, F., Zhu, J. et al. Observed Frequent Occurrences of Marine Heatwaves in Most Ocean Regions during the Last Two Decades. Adv. Atmos. Sci. 39, 1579–1587 (2022). https://doi.org/10.1007/s00376-022-1291-3

Download citation

  • Received: 29 July 2021

  • Revised: 13 January 2022

  • Accepted: 18 January 2022

  • Published: 14 May 2022

  • Issue Date: September 2022

  • DOI: https://doi.org/10.1007/s00376-022-1291-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • marine heatwave
  • daily intensity
  • linear trend
  • climate extremes

关键词

  • 海洋热浪
  • 日强度
  • 线性趋势
  • 极端气候
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.