Skip to main content

Advertisement

SpringerLink
Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles
Download PDF
Download PDF

Associated Content

Part of a collection:

Aerosols, clouds, radiation, precipitation, and their interactions

  • Original Paper
  • Open Access
  • Published: 05 February 2022

Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles

  • Jinhe Yu1,
  • Lei Bi1,
  • Wei Han2,3 &
  • …
  • Xiaoye Zhang4 

Advances in Atmospheric Sciences volume 39, pages 2024–2039 (2022)Cite this article

  • 372 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Radiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles. This paper proposes a deep learning (DL) scheme in conjunction with an optical property database to achieve this goal. Deep neural network (DNN) architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters, size parameters, and refractive indices. The dataset was computed through the invariant imbedding T-matrix method. Four separate DNN architectures were created to compute the extinction efficiency factor, single-scattering albedo, asymmetry factor, and phase matrix. The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters. The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database, which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy. In addition, the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database. Importantly, the ratio of the database size (∼127 GB) to that of the DNN parameters (∼20 MB) is approximately 6810, implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models.

摘要

辐射传输模拟和遥感反演需要准确和快速地计算非球形粒子的光学特性. 传统上一般采用查找表方法来解决电磁散射计算效率低的问题. 但随着粒子参数增加, 查找表数据体量变大, 不便于模式使用. 本文提出了一种深度学习方法用于存储和计算非球形粒子光学特性. 我们将基于不变嵌入T-矩阵方法计算的超椭球粒子光学特性作为训练数据库, 选取长宽比、 圆滑度、 粒径和复折射指数作为训练参数, 设计了四种最优的神经网络架构分别计算或预测消光效率因子、 单次散射消光比、 不对称因子以及相矩阵元素. 结果表明: 神经网络预测值与数据库真值之间的决定系数大于0.999, 可以准确再现数据库的光学特性信息. 另外, 神经网络模型还能够可靠预测出未知参数(尺寸和折射指数)的粒子光学特性值. 通过将大型数据库近乎无损压缩为四个神经网络后, 可将小巧的网络模型代替原始查找表接入辐射传输算法中, 从而实现非球形粒子光学特性的高效计算.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Abadi, M., and Coauthors, 2016: TensorFlow: A system for large-scale machine learning. Proc. 12th USENIX Symp. on Operating Systems Design and Implementation, Savannah, USENIX, 265–283.

    Google Scholar 

  • Barr, A. H., 1981: Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1, 11–23, https://doi.org/10.1109/MCG.1981.1673799.

    Article  Google Scholar 

  • Bengio, Y., 2009: Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2, 1–127, https://doi.org/10.1561/2200000006.

    Article  Google Scholar 

  • Bi, L., and P. Yang, 2014: Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method. Journal of Quantitative Spectroscopy and Radiative Transfer, 138, 17–35, https://doi.org/10.1016/j.jqsrt.2014.01.013.

    Article  Google Scholar 

  • Bi, L., and P. Yang, 2017: Improved ice particle optical property simulations in the ultraviolet to far-infrared regime. Journal of Quantitative Spectroscopy and Radiative Transfer, 189, 228–237, https://doi.org/10.1016/j.jqsrt.2016.12.007.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2009: Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes. Appl. Opt, 48, 114–126, https://doi.org/10.1364/AO.48.000114.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: A numerical combination of extended boundary condition method and invariant imbedding method applied to light scattering by large spheroids and cylinders. Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 17–22, https://doi.org/10.1016/j.jqsrt.2012.11.033.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large non-spherical inhomogeneous particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 116, 169–183, https://doi.org/10.1016/j.jqsrt.2012.11.014.

    Article  Google Scholar 

  • Bi, L., W. S. Lin, Z. Wang, X. Y. Tang, X. Y. Zhang, and B. Q. Yi, 2018: Optical modeling of sea salt aerosols: The effects of nonsphericity and inhomogeneity. J. Geophys. Res. Atmos., 123, 543–558, https://doi.org/10.1002/2017JD027869.

    Article  Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 530 pp.

  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. CoakleyJr., J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423.

    Article  Google Scholar 

  • Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53, 3433–3445, https://doi.org/10.1007/s11434-008-0494-z.

    Google Scholar 

  • Chen, Y. S., H. L. Jiang, C. Y. Li, X. P. Jia, and P. Ghamisi, 2016: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens., 54, 6232–6251, https://doi.org/10.1109/TGRS.2016.2584107.

    Article  Google Scholar 

  • Di Noia, A., and O. P. Hasekamp, 2018: Neural networks and support vector machines and their application to aerosol and cloud remote sensing: A review. Springer Series in Light Scattering: Volume 1: Multiple Light Scattering, Radiative Transfer and Remote Sensing, A. Kokhanovsky, Ed., Springer, 279–329, https://doi.org/10.1007/978-3-319-70796-9_4.

  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491–1499, https://doi.org/10.1364/JOSAA.11.001491.

    Article  Google Scholar 

  • Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590–608, https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.

    Article  Google Scholar 

  • Dubovik, O., and Coauthors, 2006: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos., 111, D11208, https://doi.org/10.1029/2005JD006619.

    Article  Google Scholar 

  • Dubovik, O., T. Lapyonok, Y. J. Kaufman, M. Chin, P. Ginoux, R. A. Kahn, and A. Sinyuk, 2008: Retrieving global aerosol sources from satellites using inverse modeling. Atmospheric Chemistry and Physics, 8, 209–250, https://doi.org/10.5194/acp-8-209-2008.

    Article  Google Scholar 

  • Dubovik, O., and Coauthors, 2019: Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. Journal of Quantitative Spectroscopy and Radiative Transfer, 224, 474–511, https://doi.org/10.1016/j.jqsrt.2018.11.024.

    Article  Google Scholar 

  • Glorot, X., and Y. Bengio, 2010: Understanding the difficulty of training deep feedforward neural networks. Proc. 13th Int. Conf. on Artificial Intelligence and Statistics (AISTATS) 2010, Sardinia, JMLR, 249–256.

    Google Scholar 

  • Glorot, X., A. Bordes, and Y. Bengio, 2011: Deep sparse rectifier neural networks. Proc. Fourteenth Int. Conf. on Artificial Intelligence and Statistics, Fort Lauderdale, PMLR, 315–323.

    Google Scholar 

  • Gong, S. L., and X. Y. Zhang, 2008: CUACE/Dust-an integrated system of observation and modeling systems for operational dust forecasting in Asia. Atmospheric Chemistry and Physics, 8, 2333–2340, https://doi.org/10.5194/acp-8-2333-2008.

    Article  Google Scholar 

  • Groth, S. P., A. J. Baran, T. Betcke, S. Havemann, and W. Śmigaj, 2015: The boundary element method for light scattering by ice crystals and its implementation in BEM++. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, 40–52, https://doi.org/10.1016/j.jqsrt.2015.08.001.

    Article  Google Scholar 

  • Ham, Y. G., J. H. Kim, and J. J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568–572, https://doi.org/10.1038/s41586-019-1559-7.

    Article  Google Scholar 

  • Heintzenberg, J., and Coauthors, 1997: Measurements and modelling of aerosol single-scattering albedo: Progress, problems and prospects. Contrib. Atmos. Phys., 70, 249–263.

    Google Scholar 

  • Hinton, G., and Coauthors, 2012: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29, 82–97, https://doi.org/10.1109/MSP.2012.2205597.

    Article  Google Scholar 

  • Hinton, G. E., and R. R. Salakhutdinov, 2006: Reducing the dimensionality of data with neural networks. Science, 313, 504–507, https://doi.org/10.1126/science.1127647.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, 1535 pp.

  • Johnson, B. R., 1988: Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861–4873, https://doi.org/10.1364/AO.27.004861.

    Article  Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002: Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: Possibilities and limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 74, 167–182, https://doi.org/10.1016/S0022-4073(01)00194-7.

    Article  Google Scholar 

  • Kahnert, M., A. Kylling, 2004: Radiance and flux simulations for mineral dust aerosols: Assessing the error due to using spherical or spheroidal model particles. J. Geophys. Res. Atmos., 109, D09203, https://doi.org/10.1029/2003JD004318.

    Google Scholar 

  • Kahnert, M., T. Nousiainen, and P. Räisänen, 2007: Mie simulations as an error source in mineral aerosol radiative forcing calculations. Quart. J. Roy. Meteor. Soc., 133, 299–307, https://doi.org/10.1002/qj.40.

    Article  Google Scholar 

  • Kahnert, M., T. Nousiainen, and H. Lindqvist, 2014: Review: Model particles in atmospheric optics. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 41–58, https://doi.org/10.1016/j.jqsrt.2014.02.014.

    Article  Google Scholar 

  • King, M. D., Y. J. Kaufman, D. Tanré, and T. Nakajima, 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor Soc., 80, 2229–2260, https://doi.org/10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2.

    Article  Google Scholar 

  • Kingma, D. P., and L. J. Ba, 2015: Adam: A method for stochastic optimization. Proc. 3rd International Conf. on Learning Representations, San Diego, ICLR.

    Google Scholar 

  • Kok, J. F., and Coauthors, 2017: Integrative analysis of desert dust size and abundance suggests less dust climate cooling. Nature Geoscience, 10, 274–278, https://doi.org/10.1038/ngeo2912.

    Article  Google Scholar 

  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. Proc. 25th Int. Conf. on Neural Information Processing Systems, Lake Tahoe, ACM, 1097–1105, https://doi.org/10.5555/2999134.2999257.

    Google Scholar 

  • LeCun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning. Nature, 521, 436–444, https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  • Li, Z., F. Niu, J. W. Fan, Y. J. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience, 888–894, https://doi.org/10.1038/ngeo1313.

  • Lin, W. S., L. Bi, and O. Dubovik, 2018: Assessing superspheroids in modeling the scattering matrices of dust aerosols. J. Geophys. Res. Atmos., 123, 13 917–13 943, https://doi.org/10.1029/2018JD029464.

    Article  Google Scholar 

  • Liu, C., R. Lee Panetta, and P. Yang, 2012: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 1728–1740, https://doi.org/10.1016/j.jqsrt.2012.04.021.

    Article  Google Scholar 

  • Liu, Q. H., 1997: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave and Optical Technology Letters, 15, 158–165, https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3.

    Article  Google Scholar 

  • Mishchenko, M. I., and M. A. Yurkin, 2017: On the concept of random orientation in far-field electromagnetic scattering by non-spherical particles. Opt. Lett., 2, 494–497, https://doi.org/10.1364/OL.42.000494.

    Article  Google Scholar 

  • Mishchenko, M. I., A. A. Lacis, B. E. Carlson, and L. D. Travis, 1995: Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophys. Res. Lett., 22, 1077–1080, https://doi.org/10.1029/95GL00798.

    Article  Google Scholar 

  • Mishchenko, M. I., and Coauthors, 2003: Aerosol retrievals from AVHRR radiances: Effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties. Journal of Quantitative Spectroscopy and Radiative Transfer, 79-80, 953–972, https://doi.org/10.1016/S0022-4073(02)00331-X.

    Article  Google Scholar 

  • Morman, S. A., and G. S. Plumlee, 2013: The role of airborne mineral dusts in human disease. Aeolian Research, 9, 203–212, https://doi.org/10.1016/j.aeolia.2012.12.001.

    Article  Google Scholar 

  • Myhre, G., and Coauthors, 2013: Anthropogenic and Natural Radiative Forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 659–740.

  • Nousiainen, T., M. Kahnert, and H. Lindqvist, 2011: Can particle shape information be retrieved from light-scattering observations using spheroidal model particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 2213–2225, https://doi.org/10.1016/j.jqsrt.2011.05.008.

    Article  Google Scholar 

  • Oquab, M., L. Bottou, I. Laptev, and J. Sivic, 2014: Learning and transferring mid-level image representations using convolutional neural networks. Proc. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, IEEE, 1717–1724, https://doi.org/10.1109/CVPR.2014.222.

    Chapter  Google Scholar 

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796, https://doi.org/10.1126/science.287.5459.1793.

    Article  Google Scholar 

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation. Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606.

    Article  Google Scholar 

  • Saito, M., P. Yang, J. C. Ding, and X. Liu, 2021: A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J. Atmos. Sci., 78, 2089–2111, https://doi.org/10.1175/JAS-D-20-0338.1.

    Google Scholar 

  • Satheesh, S. K., and K. K. Moorthy, 2005: Radiative effects of natural aerosols: A review. Atmos. Environ., 39, 2089–2110, https://doi.org/10.1016/j.atmosenv.2004.12.029.

    Article  Google Scholar 

  • Schmidhuber, J., 2017: Deep Learning. Encyclopedia of Machine Learning and Data Mining, C. Sammut and G. I. Webb, Eds., Springer, 338–348, https://doi.org/10.1007/978-1-4899-7502-7_909-1.

  • Shrivastava, A., A. Kundu, C. Dhir, D. Naik, and O. Tuzel, 2021: Optimize what matters: Training DNN-Hmm keyword spotting model using end metric. Preprints, ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, IEEE, 4000–4004, https://doi.org/10.1109/ICASSP39728.2021.9414797.

  • Silver, D., and Coauthors, 2016: Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484–489, https://doi.org/10.1038/nature16961.

    Article  Google Scholar 

  • Sokolik, I., A. Andronova, and T. C. Johnson, 1993: Complex refractive index of atmospheric dust aerosols. Atmos. Environ. Part A Gene. Top., 27, 2495–2502, https://doi.org/10.1016/0960-1686(93)90021-P.

    Article  Google Scholar 

  • Sun, L.-H., L. Bi, and B. Q. Yi, 2021: The use of superspheroids as surrogates for modeling electromagnetic wave scattering by ice crystals. Remote Sensing, 13, 1733, https://doi.org/10.3390/rs13091733.

    Article  Google Scholar 

  • Tang, X. Y., L. Bi, W. S. Lin, D. Liu, K. J. Zhang, and W. J. Li, 2019: Backscattering ratios of soot-contaminated dusts at triple LiDAR wavelengths: T-matrix results. Optics Express, 27, A92–A116, https://doi.org/10.1364/OE.27.000A92.

    Article  Google Scholar 

  • Tegen, I., A. A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422, https://doi.org/10.1038/380419a0.

    Article  Google Scholar 

  • Van De Hulst, H. C., 1981: Light Scattering by Small Particles. Dover, 485 pp.

  • Wang, G. H., and Coauthors, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 133, 13 630–13 635, https://doi.org/10.1733/pnas.1616540113.

    Article  Google Scholar 

  • Wang, H., G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li, 2015: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region-Part 2: Aerosols’ radiative feedback effects. Atmospheric Chemistry and Physics, 15, 3277–3287, https://doi.org/10.5194/acp-15-3277-2015.

    Article  Google Scholar 

  • Wang, H., Y. Peng, X. Y. Zhang, H. L. Liu, M. Zhang, H. Z. Che, Y. L. Cheng, and Y. Zheng, 2018: Contributions to the explosive growth of PM2.5 mass due to aerosol-radiation feedback and decrease in turbulent diffusion during a red alert heavy haze in Beijing-Tianjin-Hebei, China. Atmospheric Chemistry and Physics, 18, 17 717–17 733, https://doi.org/10.5194/acp-18-17717-2018.

    Article  Google Scholar 

  • Wang, Z., L. Bi, B. Q. Yi, and X. Y. Zhang, 2019: How the inhomogeneity of wet sea salt aerosols affects direct radiative forcing. Geophys. Res. Lett., 46, 1805–1813, https://doi.org/10.1029/2018GL081193.

    Article  Google Scholar 

  • Wriedt, T., 2002: Using the T-matrix method for light scattering computations by non-axisymmetric particles: Superellipsoids and realistically shaped particles. Particle & Particle Systems Characterization, 19, 256–268, https://doi.org/10.1002/1521-4117(200208)19:4<256::AID-PPSC256>3.0.CO;2-8.

    Article  Google Scholar 

  • Xue, J. S., S. Y. Zhuang, G. F. Zhu, H. Zhang, Z. Q. Liu, Y. Liu, and Z. R. Zhuang, 2008: Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chinese Science Bulletin, 53, 3446–3457, https://doi.org/10.1007/s11434-008-0416-0.

    Google Scholar 

  • Yang, P., and K. N. Liou, 1996a: Geometric-optics-integral-equation method for light scattering by non-spherical ice crystals. Appl. Opt., 35, 6568–6584, https://doi.org/10.1364/AO.35.006568.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1996b: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. Journal of the Optical Society of America A, 13, 2072–2085, https://doi.org/10.1364/JOSAA.13.002072.

    Article  Google Scholar 

  • Yang, P., and Coauthors, 2007: Modeling of the scattering and radiative properties of non-spherical dust-like aerosols. Journal of Aerosol Science, 38, 995–1014, https://doi.org/10.1016/j.jaerosci.2007.07.001.

    Article  Google Scholar 

  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 µm. J. Atmos. Sci., 70, 330–347, https://doi.org/10.1175/JAS-D-12-039.1.

    Article  Google Scholar 

  • Yee, K., 1966: Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag., 14, 302–307, https://doi.org/10.1109/TAP.1966.1138693.

    Article  Google Scholar 

  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 2234–2247, https://doi.org/10.1016/j.jqsrt.2011.01.031.

    Article  Google Scholar 

  • Zhang, R. Y., 2010: Getting to the critical nucleus of aerosol formation. Science, 328, 1366–1367, https://doi.org/10.1126/science.1189732.

    Article  Google Scholar 

  • Zhang, X. Y., J. Z. Wang, Y. Q. Wang, H. L. Liu, J. Y. Sun, and Y. M. Zhang, 2015: Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmospheric Chemistry and Physics, 15, 12 935–12 952, https://doi.org/10.5194/acp-15-12935-2015.

    Article  Google Scholar 

  • Zhao, T. X.-P., I. Laszlo, O. Dubovik, B. N. Holben, J. Sapper, D. Tanré, and C. Pietras, 2003: A study of the effect of non-spherical dust particles on the AVHRR aerosol optical thickness retrievals. Geophys. Res. Lett., 30, 1317, https://doi.org/10.1029/2002GL016379.

    Article  Google Scholar 

  • Zhou, C., X. Zhang, S. Gong, Y. Wang, and M. Xue, 2016: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system. Atmospheric Chemistry and Physics, 11, 145–160, https://doi.org/10.5194/acp-16-145-2016.

    Article  Google Scholar 

  • Zhou, C. H., and Coauthors, 2008: Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmospheric Chemistry and Physics, 8, 787–798, https://doi.org/10.5194/acp-8-787-2008.

    Article  Google Scholar 

  • Zhou, C.-H., and Coauthors, 2012: Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model-CUACE/Aero. Tellus B: Chemical and Physical Meteorology, 64, 18965, https://doi.org/10.3402/tellusb.v64i0.18965.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Rui LIU from the Training Center of Atmospheric Sciences of Zhejiang University for her efforts managing computing resources and Dr. Wushao LIN for organizing the II-TM optical properties. A portion of the computations was performed in the National Supercomputer Center in Guangzhou (NSCC-GZ), Tianjin (NSCC-TJ), and Wuxi (NSCC-WX), as well as the cluster at State Key Lab of CAD&CG at Zhejiang University. This research was supported by the NSFC Major Project (Grant Nos. 42090030, and 42090032), the National Natural Science Foundation of China (Grant Nos. 42022038, and 42075155), and the National Key Research and Development Program (2019YFC1510400).

Author information

Authors and Affiliations

  1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China

    Jinhe Yu & Lei Bi

  2. Center for Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 100081, China

    Wei Han

  3. Numerical Weather Prediction Center, China Meteorological Administration, Beijing, 100081, China

    Wei Han

  4. Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, 100081, China

    Xiaoye Zhang

Authors
  1. Jinhe Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Lei Bi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wei Han
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Xiaoye Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Lei Bi or Wei Han.

Additional information

Article Highlights

• An optical property dataset computed through the T-matrix method can be highly compressed using an optimized deep neural network.

• The optical properties of super-spheroid models can be accurately and efficiently computed through a neural network.

• The neural network can be used instead of a conventional look-up table in atmospheric radiative transfer and related atmospheric models.

This paper is a contribution to the special issue on Cloud—Aerosol—Radiation—Precipitation Interaction: Progress and Challenges.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Bi, L., Han, W. et al. Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles. Adv. Atmos. Sci. 39, 2024–2039 (2022). https://doi.org/10.1007/s00376-021-1375-5

Download citation

  • Received: 22 September 2021

  • Revised: 17 November 2021

  • Accepted: 23 November 2021

  • Published: 05 February 2022

  • Issue Date: December 2022

  • DOI: https://doi.org/10.1007/s00376-021-1375-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • non-spherical particles
  • light scattering
  • super-spheroid model
  • deep learning
  • neural network

关键词

  • 非球形粒子
  • 光散射
  • 超椭球模型
  • 深度学习
  • 神经网络
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Aerosols, clouds, radiation, precipitation, and their interactions

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.