Abiodun, O. I., A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, 2018: State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938, https://doi.org/10.1016/j.heliyon.2018.e00938.
Google Scholar
Barnett, T. P., N. Graham, S. Pazan, W. White, M. Latif, and M. Flügel, 1993: ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J. Climate, 6(8), 1545–1566, https://doi.org/10.1175/1520-0442(1993)006<1545:EAERPP>2.0.CO;2.
Google Scholar
Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. H. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93(5), 631–651, https://doi.org/10.1175/BAMS-D-11-00111.1.
Google Scholar
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97(3), 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Google Scholar
Cane, M. A., and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228(4703), 1085–1087, https://doi.org/10.1126/science.228.4703.1085.
Google Scholar
Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321(6073), 827–832, https://doi.org/10.1038/321827a0.
Google Scholar
Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269(5231), 1699–1702, https://doi.org/10.1126/science.269.5231.1699.
Google Scholar
Duchi, J., E. Hazan, and Y. Singer, 2011: Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.
Google Scholar
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Google Scholar
Feng, L. C., R.-H. Zhang, B. Yu, and X. Han, 2020: The roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv. Atmos. Sci., 37, 847–860, https://doi.org/10.1007/s00376-020-0028-4.
Google Scholar
Gao, C., and R.-H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010–12 La Niña event. Climate Dyn., 48(1–2), 597–617, https://doi.org/10.1007/s00382-016-3097-4.
Google Scholar
Gao, C., R.-H. Zhang, X. R. Wu, and J. C. Sun, 2018: Idealized experiments for optimizing model parameters using a 4D-Variational method in an intermediate coupled model of ENSO. Adv. Atmos. Sci., 35, 410–422, https://doi.org/10.1007/s00376-017-7109-z.
Google Scholar
Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001: Current approaches to seasonal to interannual climate predictions. International Journal of Climatology, 21(9), 1111–1152, https://doi.org/10.1002/joc.636.
Google Scholar
Guo, Y. N., X. O. Cao, B. N. Liu, and K. C. Peng, 2020: El Niño index prediction using deep learning with ensemble empirical mode decomposition. Symmetry, 12(6), 893, https://doi.org/10.3390/sym12060893.
Google Scholar
Ham, Y. G., J. H. Kim, and J. J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573(7775), 568–572, https://doi.org/10.1038/s41586-019-1559-7.
Google Scholar
Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res.: Atmos., 93(D9), 11015–11021, https://doi.org/10.1029/JD093iD09p11015.
Google Scholar
Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. Journal of Atmospheric Sciences, 43(6), 606–632, https://doi.org/10.1175/1520-0469(1986)043<0606:UADEMI>2.0.CO;2.
Google Scholar
Hochreiter, S., and J. Schmidhuber, 1997: Long short-term memory. Neural Computation, 9(8), 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735.
Google Scholar
Irrgang, C., N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J. Staneva, and J. Saynisch-Wagner, 2021: Towards neural earth system modelling by integrating artificial intelligence in earth system science. Nature Machine Intelligence, 3(8), 667–674, https://doi.org/10.1038/s42256-021-00374-3.
Google Scholar
Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean—atmosphere models. Climate Dyn., 31(6), 647–664, https://doi.org/10.1007/s00382-008-0397-3.
Google Scholar
Latif, M., and Coauthors, 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res.: Oceans, 103(C7), 14375–14393, https://doi.org/10.1029/97JC03413.
Google Scholar
LeCun, Y., and Y. Bengio, 1995: Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, Cambridge, MA, United States, MIT Press, 255–258.
Google Scholar
McCreary, J. P. Jr., and D. L. T. Anderson, 1991: An overview of coupled ocean-atmosphere models of El Niño and the Southern Oscillation. J. Geophys. Res.: Oceans, 96(S01), 3125–3150, https://doi.org/10.1029/90JC01979.
Google Scholar
McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314(5806), 1740–1745, https://doi.org/10.1126/science.1132588.
Google Scholar
Mu, B., B. Qin, and S. J. Yuan, 2021: ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air—sea coupler. Geoscientific Model Development, 14, 6977–6999, https://doi.org/10.5194/gmd-14-6977-2021.
Google Scholar
Nooteboom, P. D., Q. Y. Feng, C. López, E. Hernández-García, and H. A. Dijkstra, 2018: Using network theory and machine learning to predict El Niño. Earth System Dynamics, 9(3), 969–983, https://doi.org/10.5194/esd-9-969-2018.
Google Scholar
Philander, S. G., 1999: A review of tropical ocean—atmosphere interactions. Tellus B, 51(1), 71–90, https://doi.org/10.3402/tellusb.v51i1.16261.
Google Scholar
Pratt, L. Y., J. Mostow, and C. A. Kamm, 1991: Direct transfer of learned information among neural networks. Proc. 9th National Conf. on Artificial Intelligence, Anaheim, California, AAAI Press, 584–589.
Google Scholar
Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat, 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204, https://doi.org/10.1038/s41586-019-0912-1.
Google Scholar
Scarselli, F., and A. C. Tsoi, 1998: Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks, 11(1), 15–37, https://doi.org/10.1016/S0893-6080(97)00097-X.
Google Scholar
Tang, Y., and W. Hsieh, 2002: Hybrid coupled models of the tropical Pacific—II ENSO prediction. Climate Dyn., 19(3), 343–353, https://doi.org/10.1007/s00382-002-0231-2.
Google Scholar
Tang, Y. M., and Coauthors, 2018: Progress in ENSO prediction and predictability study. National Science Review, 5(6), 826–839, https://doi.org/10.1093/nsr/nwy105.
Google Scholar
Tangang, F. T., W. W. Hsieh, and B. Tang, 1997: Forecasting the equatorial Pacific sea surface temperatures by neural network models. Climate Dyn., 13(2), 135–147, https://doi.org/10.1007/s003820050156.
Google Scholar
Tippett, M. K., A. G. Barnston, and S. H. Li, 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteorol. Climatol., 51(3), 637–654, https://doi.org/10.1175/JAMC-D-11-093.1.
Google Scholar
Varotsos, C. A., C. G. Tzanis, and N. V. Sarlis, 2016: On the progress of the 2015–2016 El Niño event. Atmospheric Chemistry and Physics, 16(4), 2007–2011, https://doi.org/10.5194/acp-16-2007-2016.
Google Scholar
Von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J. Geophys. Res.: Atmos., 93(D9), 11022–11036, https://doi.org/10.1029/JD093iD09p11022.
Google Scholar
Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53(7), 5119–5136, https://doi.org/10.1007/s00382-019-04930-x.
Google Scholar
Wang, S., L. Mu, and D. R. Liu, 2021: A hybrid approach for El Niño prediction based on Empirical Mode Decomposition and convolutional LSTM Encoder-Decoder. Computers & Geosciences, 149, 104695, https://doi.org/10.1016/j.cageo.2021.104695.
Google Scholar
Wu, A. M., W. W. Hsieh, and B. Y. Tang, 2006: Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Networks, 19(2), 145–154, https://doi.org/10.1016/j.neunet.2006.01.004.
Google Scholar
Xu, G. J., and Coauthors, 2019: Oceanic eddy identification using an AI scheme. Remote Sensing, 11(11), 1349, https://doi.org/10.3390/rs11111349.
Google Scholar
Xu, J. S., 1990: Analysis and prediction of the El Niño Southern Oscillation phenomenon using principal oscillation pattern analysis. PhD dissertation, University of Hamburg.
Yan, J. N., L. Mu, L. Z. Wang, R. Ranjan, and A. Y. Zomaya, 2020: Temporal convolutional networks for the advance prediction of ENSO. Scientific Reports, 10(1), 8055, https://doi.org/10.1038/s41598-020-65070-5.
Google Scholar
You, Y. J., and J. C. Furtado, 2018: The South Pacific meridional mode and its role in tropical Pacific climate variability. J. Climate, 31(24), 10141–10163, https://doi.org/10.1175/JCLI-D-17-0860.1.
Google Scholar
Zebiak, S. E., and M. A. Cane, 1987: A model El Niño—Southern oscillation. Mon. Wea. Rev., 115(10), 2262–2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Google Scholar
Zhang, R.-H., and C. Gao, 2016: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015–2016 El Niño event. Science Bulletin, 61(13), 1061–1070, https://doi.org/10.1007/s11434-016-1064-4.
Google Scholar
Zhang, R.-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391(6670), 879–883, https://doi.org/10.1038/36081.
Google Scholar
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2005: Retrospective El Niño forecasts using an improved intermediate coupled model. Mon. Wea. Rev., 133(9), 2777–2802, https://doi.org/10.1175/MWR3000.1.
Google Scholar
Zhang, R.-H., and Coauthors, 2020: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. Journal of Oceanology and Limnology, 38(4), 930–961, https://doi.org/10.1007/s00343-020-0157-8.
Google Scholar
Zhang, S. W., H. Wang, H. Jiang, and W. T. Ma, 2021: Evaluation of ENSO prediction skill changes since 2000 based on multimodel hindcasts. Atmosphere, 12(3), 365, https://doi.org/10.3390/atmos12030365.
Google Scholar
Zheng, G., X. F. Li, R.-H. Zhang, and B. Liu, 2020: Purely satellite data-driven deep learning forecast of complicated tropical instability waves. Science Advances, 6(29), eaba1482, https://doi.org/10.1126/sciadv.aba1482.
Google Scholar