Skip to main content

Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze-Huaihe River Valley during 1981–2020

Abstract

Persistent heavy rainfall events (PHREs) over the Yangtze–Huaihe River Valley (YHRV) during 1981–2020 are classified into three types (type-A, type-B and type-C) according to pattern correlation. The characteristics of the synoptic systems for the PHREs and their possible development mechanisms are investigated. The anomalous cyclonic disturbance over the southern part of the YHRV during type-A events is primarily maintained and intensified by the propagation of Rossby wave energy originating from the northeast Atlantic in the mid–upper troposphere and the northward propagation of Rossby wave packets from the western Pacific in the mid–lower troposphere. The zonal propagation of Rossby wave packets and the northward propagation of Rossby wave packets during type-B events are more coherent than those for type-A events, which induces eastward propagation of stronger anomaly centers of geopotential height from the northeast Atlantic Ocean to the YHRV and a meridional anomaly in geopotential height over the Asian continent. Type-C events have “two ridges and one trough” in the high latitudes of the Eurasian continent, but the anomalous intensity of the western Pacific subtropical high (WPSH) and the trough of the YHRV region are weaker than those for type-A and type-B events. The composite synoptic circulation of four PHREs in 2020 is basically consistent with that of the corresponding PHRE type. The location of the South Asian high (SAH) in three of the PHREs in 2020 moves eastward as in the composite of the three types, but the position of the WPSH of the four PHREs is clearly westward and northward. Two water vapor conveyor belts and two cold air conveyor belts are tracked during the four PHREs in 2020, but the water vapor path from the western Pacific is not seen, which may be caused by the westward extension of the WPSH.

摘要

采用客观分类方法将 1981-2020 年间江淮流域持续性暴雨事件分为 A、 B 和 C 三类, 并对各类事件的典型环流特征及形成机制进行对比研究. A 类事件中, 源于北大西洋东部对流层中高层的东传 Rossby 波列与西太平洋对流层中低层的北传 Rossby 波列在江淮地区南部交汇, 气旋性扰动在该地区得以维持和加强, 有利于持续性暴雨的发生. B 类事件的纬向和经向波列都比A类事件更为显著, 且亚洲地区的高度场异常呈经向带状分布. C 型事件在欧亚高纬度地区为 “两槽一脊” 的典型环流形势, 但中低纬西太平洋副热带高压和江淮低槽的强度均比 A、 B 两类弱. 2020 年江淮流域的四例持续性暴雨事件 (1 例 A 型、 2 例 B 型和 1 例 C 型) 具有各自所属类型的环流基本特征, 但西太平洋副热带高压更为偏西偏北. 与各类型合成水汽通道对比发现, 2020 年未出现来自西太平洋的水汽通道, 这可能是由于西太平洋副热带高压偏西造成的.

References

  1. Bao, M., 2007: The statistical analysis of the persistent heavy rain in the last 50 years over China and their backgrounds on the large scale circulation. Chinese Journal of Atmospheric Sciences, 31, 779–792, https://doi.org/10.3878/j.issn.1006-9895.2007.05.03. (in Chinese with English abstract)

    Google Scholar 

  2. Bei, N. F., S. X. Zhao, and S. T. Gao, 2002: Numerical simulation of a heavy rainfall event in China during July 1998. Meteorol. Atmos. Phys., 80, 153–164, https://doi.org/10.1007/s007030200022.

    Google Scholar 

  3. Bueh, C., L.-R. Ji, and N. Shi, 2008: On the medium-range process of the rainy, snowy and cold weather of South China in early 2008. Part I: Low-frequency waves embedded in the Asian-African subtropical jet. Climatic and Environmental Research, 13(4), 419–433, https://doi.org/10.3878/j.issn.1006-9585.2008.04.07. (in Chinese with English abstract)

  4. Chang, E. K. M., 1999: Characteristics of wave packets in the upper troposphere. Part II: Seasonal and hemispheric variations. J. Atmos. Sci., 56(11), 1729–1747, https://doi.org/10.1175/1520-0469(1999)056<1729:COWPIT>2.0.CO;2.

  5. Chang, E. K. M., and D. B. Yu, 1999: Characteristics of wave packets in the upper troposphere. Part I: Northern hemisphere winter.J.Atmos.Sci.,56(11),1708–1728,https://doi.org/10.1175/1520-0469(1999)056<1708:COWPIT>2.0.CO;2.

    Google Scholar 

  6. Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15(16), 2163–2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    Google Scholar 

  7. Chen, T., F. H. Zhang, C. Yu, J. Ma, X. D. Zhang, X. L. Shen, F. Zhang, and Q. Luo, 2020: Synoptic analysis of extreme Meiyu precipitation over Yangtze River Basin during June–July 2020. Meteorological Monthly, 46(11), 1415–1426, https://doi.org/10.7519/j.issn.1000-0526.2020.11.003. (in Chinese with English abstract)

    Google Scholar 

  8. Chen, Y., and P. M. Zhai, 2013: Persistent extreme precipitation events in China during 1951–2010. Climate Research, 57, 143–155, https://doi.org/10.3354/cr01171.

    Google Scholar 

  9. Chen, Y., and P. M. Zhai, 2014: Two types of typical circulation pattern for persistent extreme precipitation in Central-Eastern China. Quart. J. Roy. Meteor. Soc., 140(682), 1467–1478, https://doi.org/10.1002/qj.2231.

    Google Scholar 

  10. Chen, Y., P. M. Zhai, Z. Liao, and L. Li, 2019: Persistent precipitation extremes in the Yangtze River Valley prolonged by opportune configuration among atmospheric teleconnections. Quart. J. Roy. Meteor. Soc., 145(723), 2603–2626, https://doi.org/10.1002/qj.3581.

    Google Scholar 

  11. Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70(1B), 373–396, https://doi.org/10.2151/jmsj1965.70.1B_373.

    Google Scholar 

  12. Ding, Y. H., 1993: Study on the Lasting Heavy Rainfalls over the Yangtze-Huaihe River Basin in 1991. China Meteorological Press, 254–255. (in Chinese)

    Google Scholar 

  13. Ding, Y. H., and Y. Sun, 2001: A study on anomalous activities of east Asian summer monsoon during 1999. J. Meteor. Soc. Japan, 79(6), 1119–1137, https://doi.org/10.2151/jmsj.79.1119.

    Google Scholar 

  14. Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu., 2021: The record-breaking mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-0361-2.

    Google Scholar 

  15. Draxler, R. R., 1999: HYSPLIT_4 user’s guide. NOAA Tech. Memo. ERL ARL-230, 45 pp.

    Google Scholar 

  16. Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_ 4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295–308.

    Google Scholar 

  17. Du, H. B., and Coauthors, 2019: Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett., 46(11), 6041–6049, https://doi.org/10.1029/2019GL081898.

    Google Scholar 

  18. Enomoto, T., B. J. Hoskins, and Y. Matsuda. 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178, https://doi.org/10.1256/qj.01.211.

  19. Fu, S.-M., J.-H. Sun, J. Ling, H.-J. Wang, and Y.-C. Zhang, 2016: Scale interactions in sustaining persistent torrential rainfall events during the Mei-yu season. J. Geophys. Res., 121(21), 12856–12876, https://doi.org/10.1002/2016JD025446.

    Google Scholar 

  20. Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907–925, https://doi.org/10.1175/JAS-D-17-0294.1.

    Google Scholar 

  21. Grazzini, F., and G. van der Gum, 2002: Central European floods during summer 2002. ECMWF Newsletter, 96, 18–28.

    Google Scholar 

  22. Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci., 59(6), 1041–1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    Google Scholar 

  23. Hou, L. Q., 2020: Casualties from floods drop by 55%. China Daily. Available from http://epaper.chinadaily.com.cn/a/202008/14/WS5f35e425a3107831ec754438.html.

    Google Scholar 

  24. Hsu, H.-H., and S.-M. Lin, 2007: Asymmetry of the tripole rainfall pattern during the east Asian summer. J. Climate, 20(17), 4443–4458, https://doi.org/10.1175/JCLI4246.1.

    Google Scholar 

  25. Hu, J. G., B. Zhou, and H. M. Xu, 2013: Characteristics of multipatterns of precipitation over the Yangtze-Huaihe Basins during Meiyu season in recent 30 years. Journal of Applied Meteorological Science, 24(5), 554–564, https://doi.org/10.3969/j.issn.1001-7313.2013.05.005. (in Chinese with English abstract)

    Google Scholar 

  26. Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical Western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70(1B), 243–256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    Google Scholar 

  27. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter. 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631.

    Google Scholar 

  28. Kosaka, Y, and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030, https://doi.org/10.1256/qj.05.204.

    Google Scholar 

  29. Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Longterm trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12(8), 2515–2527, https://doi.org/10.1175/1520-0442(1999)012<2515:LTTIEP>2.0.CO;2.

    Google Scholar 

  30. Lau, K.-M., G. J. Yang, and S. H. Shen, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116(1), 18–37, https://doi.org/10.1175/1520-0493(1988)116<0018:SAICOS>2.0.CO;2.

  31. Li, D. S., J. H. Sun, S. M. Fu, J. Wei, S. G. Wang, and F. Y. Tian, 2016: Spatiotemporal characteristics of hourly precipitation over central eastern China during the warm season of 1982–2012. International Journal of Climatology, 36, 3148–3160, https://doi.org/10.1002/joc.4543.

    Google Scholar 

  32. Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 1213–1233, https://doi.org/10.1256/qj.03.101.

    Google Scholar 

  33. Santer, B. D., T. M. L. Wigley, and P. D. Jones, 1993: Correlation methods in fingerprint detection studies. Climate Dyn., 8(6), 265–276, https://doi.org/10.1007/BF00209666.

    Google Scholar 

  34. Schumacher, R. S., 2011: Ensemble-based analysis of factors leading to the development of a multiday warm-season heavy rain event. Mon. Wea. Rev., 139(9), 3016–3035, https://doi.org/10.1175/MWR-D-10-05022.1.

    Google Scholar 

  35. Shi, N., X. Q. Wang, L. Y. Zhang, and H. M. Xu, 2016: Features of rossby wave propagation associated with the evolution of summertime blocking highs with different configurations over northeast Asia. Mon. Wea. Rev., 144(7), 2531–2546, https://doi.org/10.1175/MWR-D-15-0369.1.

    Google Scholar 

  36. Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96(12), 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1.

    Google Scholar 

  37. Sun, J. H., and S. X. Zhao. 2000. A diagnosis and simulation study of a strong heavy rainfall in South China. Chinese Journal of Atmospheric Sciences, 24(3), 381–392, https://doi.org/10.3878/j.issn.1006-9895.2000.03.10. (in Chinese with English abstract)

    Google Scholar 

  38. Sun, J. H., H. J. Wang, J. Wei, and L. L. Qi, 2016: The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze-Huaihe River Valley. Acta Meteorologica Sinica, 74(4), 542–555, https://doi.org/10.11676/qxxb2016.047. (in Chinese with English abstract)

    Google Scholar 

  39. Sun, J. H., J. Wei, S. M. Fu, Y. C. Zhang, and H. J. Wang, 2018: The multi-scale physical model for persistent heavy rainfall events in the Yangtze-Huaihe River valley. Chinese Journal of Atmospheric Sciences, 42(4), 741–754, https://doi.org/10.3878/j.issn.1006-9895.1803.17246. (in Chinese with English abstract)

    Google Scholar 

  40. Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    Google Scholar 

  41. Tang, Y. B., J. J. Gan, L. Zhao, and K. Gao, 2006: On the climatology of persistent heavy rainfall events in China. Adv. Atmos. Sci., 23(5), 678–692, https://doi.org/10.1007/s00376-006-0678-x.

    Google Scholar 

  42. Tao, S. Y., and Coauthors., 1980: Heavy Rainfall in China. Science Press, 45–46. (in Chinese)

    Google Scholar 

  43. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-92.

    Google Scholar 

  44. Tao, S. Y., and J. Wei, 2006: The westward, northward advance of the subtropical high over the west Pacific in summer. Journal of Applied Meteorological Science, 17(5), 513–525, https://doi.org/10.3969/j.issn.1001-7313.2006.05.001. (in Chinese with English abstract)

    Google Scholar 

  45. Tao, S. Y., and J. Wei, 2007: Correlation between monsoon surge and heavy rainfall causing flash-flood in Southern China in summer. Meteorological Monthly, 33(3), 10–18, https://doi.org/10.3969/j.issn.1000-0526.2007.03.002. (in Chinese with English abstract)

    Google Scholar 

  46. Tao, S. Y., Y. Q. Ni, S. X. Zhao, S. J. Chen, and J. J. Wang, 2001: The Study on Formation Mechanism and Forecasting of Heavy Rainfall in the Summer 1998. China Meteorological Press, 183–184. (in Chinese)

    Google Scholar 

  47. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84(9), 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205.

    Google Scholar 

  48. Wang, H. J., J. H. Sun, J. Wei, and S. X. Zhao, 2014: Classification of persistent heavy rainfall events over southern China during recent 30 years. Climatic and Environmental Research, 19(6), 713–725, https://doi.org/10.3878/j.issn.1006-9585.2013.13143. (in Chinese with English abstract)

    Google Scholar 

  49. Yin, Z. Y., Y. L. Cai, X. Y. Zhao, and X. L. Chen, 2009: An analysis of the spatial pattern of summer persistent moderate-toheavy rainfall regime in Guizhou Province of Southwest China and the control factors. Theor. Appl. Climatol., 97(3–4), 205–218, https://doi.org/10.1007/s00704-008-0060-2.

    Google Scholar 

  50. Zong, H. F., C. Bueh, and L. R. Ji, 2014: Wintertime extreme precipitation event over southern China and its typical circulation features. Chinese Science Bulletin, 59, 1036–1044, https://doi.org/10.1007/s11434-014-0124-x.

    Google Scholar 

Download references

Acknowledgements

We sincerely thank Cholaw BUEH and Zuowei XIE for the insightful suggestions for the analysis of wave-activity energy propagation. The daily precipitation data at 2 420 stations used in the present study were provided by the National Meteorological Center, China Meteorological Administration. This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA23090101) and National Natural Science Foundation of China (Grant No. 41975056).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianhua Sun.

Additional information

Article Highlights

• The PHREs over the YHRV are classified objectively into three types with rainbands located in different parts of the YHRV.

• The intensified zonal and meridional propagation of Rossby wave energy in type-A induces stronger anomaly centers of geopotential height.

• Two water vapor paths of PHREs in 2020 are tracked in the absence of a path from the western Pacific, which may be caused by the westward extension of the WPSH.

This paper is a contribution to the special issue on Summer 2020: Record Rainfall in Asia—Mechanisms, Predictability and Impacts.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, J., Fu, S. et al. Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze-Huaihe River Valley during 1981–2020. Adv. Atmos. Sci. 38, 2167–2182 (2021). https://doi.org/10.1007/s00376-021-1194-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-021-1194-8

Key words

  • persistent heavy rainfall events
  • Yangtze-Huaihe River Valley
  • Rossby wave energy dispersion
  • water vapor paths
  • cold air paths

关键词

  • 持续性暴雨
  • 江淮流域
  • 波作用通量频散
  • 水汽传输
  • 冷空气路径