Skip to main content

A Comparison of Two Bulk Microphysics Parameterizations for the Study of Aerosol Impacts on an Idealized Supercell

Abstract

Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes (BMSs), the Thompson and the Chen-Liu-Reisner (CLR), using the Weather Research and Forecast (WRF) model. The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution. The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm. The storm consists of a large amount of cloud water and snow in the polluted environment, but a large amount of rainwater and graupel instead in the clean environment. The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations. The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors. The cloud condensation nuclei (CCN) activation and auto-conversion processes of the two schemes exhibit considerable differences, indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs. Beyond the aerosol effects, the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling. The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.

This is a preview of subscription content, access via your institution.

References

  1. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227.

    Article  Google Scholar 

  2. Alizadeh-Choobari, O., 2018: Impact of aerosol number concentration on precipitation under different precipitation rates. Meteorological Applications, 25(4), 596–605, https://doi.org/10.1002/met.1724.

    Article  Google Scholar 

  3. Alizadeh-Choobari, O., and M. Gharaylou, 2017: Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmospheric Research, 185, 53–64, https://doi.org/10.1016/j.atmosres.2016.10.021.

    Article  Google Scholar 

  4. Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols-coupling between microphysics and dynamics. Atmospheric Research, 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009.

    Article  Google Scholar 

  5. Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the amazon. Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779.

    Article  Google Scholar 

  6. Bao, J. W., S. A. Michelson, and E. D. Grell, 2016: Pathways to the production of precipitating hydrometeors and tropical cyclone development. Mon. Wea. Rev., 144, 2395–2420, https://doi.org/10.1175/MWR-D-15-0363.1.

    Article  Google Scholar 

  7. Bao, J.-W., S. A. Michelson, and E. D. Grell, 2019: Microphysical process comparison of three microphysics parameterization schemes in the WRF model for an idealized squall-line case study. Mon. Wea. Rev., 147, 3093–3120, https://doi.org/10.1175/MWR-D-18-0249.1.

    Article  Google Scholar 

  8. Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud drop growth by collection Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831, https://doi.org/10.1175/1520-0469(1974)031<1825:AAOCDG>2.0.CO;2.

    Article  Google Scholar 

  9. Bigg, E. K., 1953: The supercooling of water. Proceedings of the Physical Society. Section B, 66, 688–694, https://doi.org/10.1088/0370-1301/66/8/309.

    Article  Google Scholar 

  10. Chen, J. P., and S. T. Liu, 2004: Physically based two-moment bulk water parameterization for warm-cloud microphysics. Quart. J. Roy. Meteor. Soc., 130, 51–78, https://doi.org/10.1256/qj.03.41.

    Article  Google Scholar 

  11. Cheng, C. T., W. C. Wang, and J.-P. Chen, 2007: A modelling study of aerosol impacts on cloud microphysics and radiative properties. Quar. J. Roy. Meteor. Soc., 133, 283–297, https://doi.org/10.1002/qj.25.

    Article  Google Scholar 

  12. Cheng, C. T., W. C. Wang, and J. P. Chen, 2010: Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research, 96, 461–476, https://doi.org/10.1016/j.atmosres.2010.02.005.

    Article  Google Scholar 

  13. DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11217–11222, https://doi.org/10.1073/pnas.0910818107.

    Article  Google Scholar 

  14. Eidhammer, T., P. J. DeMott, and S. M. Kreidenweis, 2009: A comparison of heterogeneous ice nucleation parameterizations using a parcel model framework. J. Geophys. Res.: Atmos., 114, D06202, https://doi.org/10.1029/2008JD011095.

    Article  Google Scholar 

  15. Eidhammer, T., and Coauthors, 2010: Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud. J. Atmos. Sci., 67, 2417–2436, https://doi.org/10.1175/2010JAS3266.1.

    Article  Google Scholar 

  16. Fan, J. W., Y. Wang, D. Rosenfeld, and X. H. Liu, 2016: Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73(11), 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1.

    Article  Google Scholar 

  17. Feingold, G., and A. J. Heymsfield, 1992: Parameterizations of condensational growth of droplets for use in general circulation models. J. Atmos. Sci., 49, 2325–2342, https://doi.org/10.1175/1520-0469(1992)049<2325:POCGOD>2.0.CO;2.

    Article  Google Scholar 

  18. Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, https://doi.org/10.1038/249026a0.

    Article  Google Scholar 

  19. Han, J.-Y., J.-J. Baik, and A. P. Khain, 2012: A numerical study of urban aerosol impacts on clouds and precipitation. J. Atmos. Sci., 69, 504–520, https://doi.org/10.1175/JAS-D-11-071.1.

    Article  Google Scholar 

  20. Huang, Y. J., Y. P. Wang, L. L. Xue, X. L. Wei, L. N. Zhang, and H. Y. Li, 2020: Comparison of three microphysics parameterization schemes in the WRF model for an extreme rainfall event in the coastal metropolitan City of Guangzhou, China. Atmospheric Research, 240, 104939, https://doi.org/10.1016/j.atmosres.2020.104939.

    Article  Google Scholar 

  21. Kalina, E. A., K. Friedrich, H. Morrison, and G. H. Bryan, 2014: Aerosol effects on idealized supercell thunderstorms in different environments. J. Atmos. Sci., 71, 4558–4580, https://doi.org/10.1175/JAS-D-14-0037.1.

    Article  Google Scholar 

  22. Khadke, L., and S. Pattnaik, 2021: Impact of initial conditions and cloud parameterization on the heavy rainfall event of Kerala (2018). Modeling Earth Systems and Environment, https://doi.org/10.1007/s40808-020-01073-5.

  23. Khain, A., and A. Pokrovsky, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part II: Sensitivity study. J. Atmos. Sci., 61, 2983–3001, https://doi.org/10.1175/JAS-3281.1.

    Article  Google Scholar 

  24. Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663, https://doi.org/10.1256/qj.04.62.

    Article  Google Scholar 

  25. Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614, https://doi.org/10.1038/35020537.

    Article  Google Scholar 

  26. Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, https://doi.org/10.1029/2005GL023187.

    Article  Google Scholar 

  27. Lebo, Z. J., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmospheric Chemistry and Physics, 12(20), 9941–9964, https://doi.org/10.5194/acp-12-9941-2012.

    Article  Google Scholar 

  28. Lee, S. S., L. J. Donner, and V. T. J. Phillips, 2009: Impacts of aerosol chemical composition on microphysics and precipitation in deep convection. Atmospheric Research, 94, 220–237, https://doi.org/10.1016/j.atmosres.2009.05.015.

    Article  Google Scholar 

  29. Lee, S. S., C. H. Jung, S. Chiao, J. Um, Y. S. Choi, and W. J. Choi, 2019: Comparison of simulations of updraft mass fluxes and their response to increasing aerosol concentration between a bin scheme and a bulk scheme in a deep-convective cloud system. Advances in Meteorology, 2019, 9292535, https://doi.org/10.1155/2019/9292535.

    Google Scholar 

  30. Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, https://doi.org/10.1175/2009MWR2968.1.

    Article  Google Scholar 

  31. Lin, J. C., T. Matsui, R. A. Pielke, and C. Kummerow, 2006: Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res.: Atmos., 111, D19204, https://doi.org/10.1029/2005JD006884.

    Article  Google Scholar 

  32. Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteorol. Climatol., 31, 708–721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    Article  Google Scholar 

  33. Morrison, H., and W. W. Grabowski, 2011: Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment. Atmospheric Chemistry and Physics, 11, 10503–10523, https://doi.org/10.5194/acp-11-10503-2011.

    Article  Google Scholar 

  34. Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    Article  Google Scholar 

  35. Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007.

    Article  Google Scholar 

  36. Phillips, V. T. J., T. W. Choularton, A. M. Blyth, and J. Latham, 2002: The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud. Quart. J. Roy. Meteor. Soc., 128, 951–971, https://doi.org/10.1256/0035900021643601.

    Article  Google Scholar 

  37. Qian, Y., D. Y. Gong, J. W. Fan, L. R. Leung, R. Bennartz, D. L. Chen, and W. G. Wang, 2009: Heavy pollution suppresses light rain in china: Observations and modeling. J. Geophys. Res.: Atmos., 114, D00K02, https://doi.org/10.1029/2008JD011575.

    Article  Google Scholar 

  38. Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, https://doi.org/10.1002/qj.49712454804.

    Article  Google Scholar 

  39. Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108, https://doi.org/10.1029/1999GL006066.

    Article  Google Scholar 

  40. Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmospheric Chemistry and Physics, 7(13), 3411–3424, https://doi.org/10.5194/acp-7-3411-2007.

    Article  Google Scholar 

  41. Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606.

    Article  Google Scholar 

  42. Rutledge, S. A., and P. V. Hobbs, 1984: The Mesoscale and Microscale structure and organization of clouds and precipitation in Midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal Rainbands. J. Atmos. Sci., 41, 2949–2972, https://doi.org/10.1175/1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

    Article  Google Scholar 

  43. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note-475+STR, 113 pp.

  44. Tao, W. K., X. W. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud- resolving model simulations. J. Geophys. Res.: Atmos., 112(D24), D24S18, https://doi.org/10.1029/2007JD008728.

    Article  Google Scholar 

  45. Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71(10), 3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1.

    Article  Google Scholar 

  46. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1.

    Article  Google Scholar 

  47. Wang, C. E., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, https://doi.org/10.1029/2004JD005720.

    Article  Google Scholar 

  48. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    Article  Google Scholar 

  49. Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSA-CON>2.0.CO;2.

    Article  Google Scholar 

  50. Weisman, M. L., and J. B. Klemp, 1986: Characteristics of isolated convective storms. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 331–358, https://doi.org/10.1007/978-1-935704-20-1_15.

  51. Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57(9), 1452–1472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    Article  Google Scholar 

  52. Whitby, K. T., 1978: The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135–159, https://doi.org/10.1016/0004-6981(78)90196-8.

    Article  Google Scholar 

  53. Xie, X. N., and X. D. Liu, 2015: Aerosol-cloud-precipitation interactions in WRF model: Sensitivity to autoconversion parameterization. J. Meteor. Res., 29(1), 72–81, https://doi.org/10.1007/s13351-014-4065-8.

    Article  Google Scholar 

  54. Zhang, X., J. W. Bao, B. D. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Wea. Rev., 146, 2023–2045, https://doi.org/10.1175/MWR-D-17-0356.1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2016YFE0109700 and 2017YFC150190X), Research Program from Science and Technology Committee of Shanghai (Grant No. 19dz1200101), and National Science Foundation of China (Grant Nos. 41575101 and 41975133). The authors are grateful to Drs. Jen-Ping CHEN and Tzu-Chin TSAI for providing the CLR scheme and guidance, and for fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Additional information

Article Highlights

• Two aerosol-aware bulk microphysics schemes, the Thompson and the CLR, are compared in idealized supercell simulations.

• The characteristics of precipitation, cloud, and latent heat profiles, as well as the dynamical feedback, are investigated.

• The article attempts to identify the fundamental assumptions between the two schemes that lead to their different responses to the same prescribed aerosol loading at storm initiation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Huang, W. & Chen, B. A Comparison of Two Bulk Microphysics Parameterizations for the Study of Aerosol Impacts on an Idealized Supercell. Adv. Atmos. Sci. (2021). https://doi.org/10.1007/s00376-021-1187-7

Download citation

Key words

  • numerical weather prediction
  • aerosol particle size distribution
  • aerosol-aware microphysics scheme
  • supercell
  • precipitation intensity
  • precipitation physics