Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). Journal of Hydrometeorology, 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Google Scholar
Bett, P. E., and Coauthors, 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918–926, https://doi.org/10.1007/s00376-018-7210-y.
Google Scholar
Bett, P. E., and Coauthors, 2020: Seasonal rainfall forecasts for the Yangtze River basin of China in summer 2019 from an improved climate service. Journal of Meteorological Research, 34, 904–916, https://doi.org/10.1007/s13351-020-0049-z.
Google Scholar
Bett, P. E., G. M. Martin, N. Dunstone, A. A. Scaife, H. E. Thornton, and C. F. Li, 2021: Seasonal rainfall forecasts for the Yangtze River basin in the extreme summer of 2020. Adv. Atmos. Sci., doi: https://doi.org/10.1007/s00376-021-1087-x.
Google Scholar
Camp, J., and Coauthors, 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105–116, https://doi.org/10.1002/qj.3407.
Google Scholar
Chen, G., P. F. Zhang, and J. Lu, 2020: Sensitivity of the latitude of the westerly jet stream to climate forcing. Geophys. Res. Lett., 47, e2019GL086563, https://doi.org/10.1029/2019GL086563.
Google Scholar
Chowdary, J. S., S.-P. Xie, J.-J. Luo, J. Hafner, S. Behera, Y. Masumoto, and T. Yamagata, 2011: Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Climate Dyn., 36, 607–621, https://doi.org/10.1007/s00382-009-0686-5.
Google Scholar
Golding, N., C. Hewitt, P. Q. Zhang, P. Bett, X. Y. Fang, H. Z. Hu, and S. Nobert, 2017: Improving user engagement and uptake of climate services in China. Climate Services, 5, 39–45, https://doi.org/10.1016/j.cliser.2017.03.004.
Google Scholar
Hardiman, S. C., and Coauthors, 2018: The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña. Environmental Research Letters, 13, 024015, https://doi.org/10.1088/1748-9326/aaa172.
Google Scholar
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Google Scholar
Hu, K. M., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on Northwest Pacific-East Asian early summertime climate simulated in CMIP5 models. J. Climate, 27, 5982–5998, https://doi.org/10.1175/JCLI-D-13-00268.1.
Google Scholar
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5(ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/jcli-d-16-0836.1.
Google Scholar
Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 21–32, https://doi.org/10.1007/bf02656915.
Google Scholar
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256, https://doi.org/10.2151/jmsj1965.70.1B_243.
Google Scholar
Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574–7589, https://doi.org/10.1175/JCLI-D-12-00009.1.
Google Scholar
Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the National Academy of Sciences of the United States of America, 110, 7574–7579, https://doi.org/10.1073/pnas.1215582110.
Google Scholar
Kuang, X.-Y., and Y.-C. Zhang, 2006: Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River. Plateau Meteorology, 25, 382–389, https://doi.org/10.3321/jissn:1000-0534.2006.03.004. (in Chinese with English abstract)
Google Scholar
Li, C. F., and Z. D. Lin, 2015: Predictability of the summer East Asian upper-tropospheric westerly jet in ENSEMBLES multi-model forecasts. Adv. Atmos. Sci., 32, 1669–1682, https://doi.org/10.1007/s00376-015-5057-z.
Google Scholar
Li, C. F., R. Y. Lu, and B. W. Dong, 2012: Predictability of the western North Pacific summer climate demonstrated by the coupled models of ENSEMBLES. Climate Dyn., 39, 329–346, https://doi.org/10.1007/s00382-011-1274-z.
Google Scholar
Li, C. F., and Coauthors, 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environmental Research Letters, 11, 094002, https://doi.org/10.1088/1748-9326/11/9/094002.
Google Scholar
Li, C. F., W. Chen, X. W. Hong, and R. Y. Lu, 2017: Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events? —Role of midlatitde circulation in August. Adv. Atmos. Sci., 34, 1290–1300, https://doi.org/10.1007/s00376-017-7003-8.
Google Scholar
Li, C. F., R. Y. Lu, and N. Dunstone, 2021: Prediction of the western North Pacific subtropical high in summer without strong ENSO forcing. Journal of Meteorological Research, 35, 101–112, https://doi.org/10.1007/s13351-021-0113-3.
Google Scholar
Li, X. Y., and R. Y. Lu, 2017: Extratropical factors affecting the variability in summer precipitation over the Yangtze River basin, China. J. Climate, 30, 8357–8374, https://doi.org/10.1175/jcli-d-16-0282.1.
Google Scholar
Li, X. Y., and R. Y. Lu, 2018: Subseasonal change in the seesaw pattern of precipitation between the Yangtze River basin and the tropical western North Pacific during summer. Adv. Atmos. Sci., 35, 1231–1242, https://doi.org/10.1007/s00376-018-7304-6.
Google Scholar
Lin, X. Z., C. F. Li, Z. D. Lin, and R. Y. Lu, 2018: Close relationship between the East Asian westerly jet and Russian far East surface air temperature in summer. Atmos. Ocean. Sci. Lett., 11, 282–286, https://doi.org/10.1080/16742834.2018.1467726.
Google Scholar
Lin, Z. D., and R. Y. Lu, 2005: Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci., 22, 199, https://doi.org/10.1007/BF02918509.
Google Scholar
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Google Scholar
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the Extreme Meiyu in 2020. Meteorological Monthly, 46, 1393–1404, https://doi.org/10.7519/jissn.1000-0526.2020.11.001. (in Chinese with English abstract)
Google Scholar
Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155–165, https://doi.org/10.2151/jmsj.82.155.
Google Scholar
Lu, R. Y., and B. W. Dong, 2001: Westward extension of North Pacific subtropical high in summer. J. Meteor. Soc. Japan, 79, 1229–1241, https://doi.org/10.2151/jmsj.79.1229.
Google Scholar
Lu, R. Y., Y. Li, and B. W. Dong, 2006: External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Japan, 84, 447–462, https://doi.org/10.2151/jmsj.84.447.
Google Scholar
MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5(GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084, https://doi.org/10.1002/qj.2396.
Google Scholar
Martin, G. M., N. J. Dunstone, A. A. Scaife, and P. E. Bett, 2020: Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37, 29–41, https://doi.org/10.1007/s00376-019-9051-8.
Google Scholar
Qu, X., and G. Huang, 2012: Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. International Journal of Climatology, 32, 2073–2080, https://doi.org/10.1002/joc.2378.
Google Scholar
Scaife, A. A., and Coauthors, 2019: Tropical rainfall predictions from multiple seasonal forecast systems. International Journal of Climatology, 39, 974–988, https://doi.org/10.1002/joc.5855.
Google Scholar
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Google Scholar
Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamuri, Eds., Oxford University Press, 60–92.
Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.
Google Scholar
Wang, B., and Q. Zhang, 2002: Pacific-East Asian teleconnection. Part II: How the philippine sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.
Google Scholar
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Google Scholar
Wang, B., Q. H. Ding, X. H. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, https://doi.org/10.1029/2005GL022734.
Wang, S. X., and H. C. Zuo, 2016: Effect of the East Asian westerly jet’s intensity on summer rainfall in the Yangtze River valley and its mechanism. J. Climate, 29, 2395–2406, https://doi.org/10.1175/jcli-d-15-0259.1.
Google Scholar
Wang, S. X., H. C. Zuo, S. M. Zhao, J. K. Zhang, and S. Lu, 2018a: How East Asian westerly jet’s meridional position affects the summer rainfall in Yangtze-Huaihe River Valley? Climate Dyn., 51, 4109–4121, https://doi.org/10.1007/s00382-017-3591-3.
Google Scholar
Wang, Z. Q., S. Yang, N.-C. Lau, and A. M. Duan, 2018b: Teleconnexion between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau. J. Climate, 31, 6433–6444, https://doi.org/10.1175/jcli-d-17-0413.1.
Google Scholar
Wei, K., C. J. Ouyang, H. T. Duan, Y. L. Li, M. X. Chen, J. Ma, H. C. An, and S. Zhou, 2020: Reflections on the catastrophic 2020 Yangtze River basin flooding in southern China. The Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.
Google Scholar
Williams, K. D., and Coauthors, 2015: The met office global coupled model 2.0(GC2) configuration. Geoscientific Model Development, 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015.
Google Scholar
Wu, B., T. J. Zhou, and T. Li, 2009: Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-Developing and ENSO-Decaying summers. J. Climate, 22, 4398–4405, https://doi.org/10.1175/2009JCLI2648.1.
Google Scholar
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1.
Google Scholar
Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6.
Google Scholar
Xuan, S. L., Q. Y. Zhang, S. Q. Sun, and C. L. Shi, 2018: Contrast in the East Asian subtropical westerly jet and its association with precipitation in China between early summer and midsummer. Meteorological Applications, 25, 119–127, https://doi.org/10.1002/met.1675.
Google Scholar
Zhang, F. H., T. Chen, F. Zhang, X. L. Shen, and Y. Lan, 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River Basin in June-July 2020. Meteorological Monthly, 46, 1405–1414, https://doi.org/10.7519/jissn.1000-0526.2020.11.002. (in Chinese with English abstract)
Google Scholar
Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229–241, https://doi.org/10.1007/BF02973084.
Google Scholar
Zhang, W. J., Z. C. Huang, F. Jiang, M. F. Stuecker, G. S. Chen, and F.-F. Jin, 2021: Exceptionally persistent Madden-Julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.
Google Scholar
Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.
Google Scholar
Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.
Google Scholar