Skip to main content

Advertisement

SpringerLink
Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review
Download PDF
Download PDF

Associated Content

Part of a collection:

Climate Change and Variability of Tropical Cyclone Activity

  • Review
  • Open Access
  • Published: 21 January 2022

Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review

  • Liguang Wu1,3,
  • Haikun Zhao2,
  • Chao Wang2,
  • Jian Cao2 &
  • …
  • Jia Liang2 

Advances in Atmospheric Sciences volume 39, pages 205–221 (2022)Cite this article

  • 1483 Accesses

  • 11 Citations

  • 62 Altmetric

  • Metrics details

Abstract

The effect of climate change on tropical cyclone intensity has been an important scientific issue for a few decades. Although theory and modeling suggest the intensification of tropical cyclones in a warming climate, there are uncertainties in the assessed and projected responses of tropical cyclone intensity to climate change. While a few comprehensive reviews have already provided an assessment of the effect of climate change on tropical cyclone activity including tropical cyclone intensity, this review focuses mainly on the understanding of the effect of climate change on basin-wide tropical cyclone intensity, including indices for basin-wide tropical cyclone intensity, historical datasets used for intensity trend detection, environmental control of tropical cyclone intensity, detection and simulation of tropical cyclone intensity change, and some issues on the assessment of the effect of climate change on tropical cyclone intensity. In addition to the uncertainty in the historical datasets, intertwined natural variabilities, the considerable model bias in the projected large-scale environment, and poorly simulated inner-core structures of tropical cyclones, it is suggested that factors controlling the basin-wide intensity can be different from individual tropical cyclones since the assessment of the effect of climate change treats tropical cyclones in a basin as a whole.

摘 要

尽管理论和数值模拟都表明, 全球变暖背景下热带气旋的强度会增加, 但是评估和预测热带气旋强度对气候变化的响应存在很多不确定性。近年来一些文章已经综述了气候变化对热带气旋活动的影响, 包括对热带气旋强度的影响, 本文主要关注在气候变化影响热带气旋强度机理认识方面的进展, 内容包括表征海盆尺度热带气旋强度的指数、用于发现热带气旋强度趋势的历史数据集、影响热带气旋强度的环境因子、热带气旋强度变化的观测分析和数值模拟, 以及气候变化影响热带气旋强度研究存在的一些问题。除了历史数据集的不确定性、交织在一起的自然变率、模式预测大尺度环境存在的偏差、模拟热带气旋内核结构能力不足等因素外, 评估和预测气候变化对热带气旋强度影响的不确定性还来自影响海盆尺度热带气旋强度的机理不太清楚, 因为影响海盆尺度热带气旋强度的机理不同于单个热带气旋。

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Bell, G. D., M. S. Halpert, C. F. Ropelewski, V. E. Kousky, A. V. Douglas, R. C. Schnell, and M. E. Gelman, 1999: Climate assessment for 1998. Bulletin of the American Meteorological Society, 80(5s), S1–S48.

    Article  Google Scholar 

  • Bell, G. D., and M. Chelliah, 2006: Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. Journal of Climate, 19(4), 590–612, https://doi.org/10.1175/JCLI3659.1.

    Article  Google Scholar 

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    Article  Google Scholar 

  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454–458, https://doi.org/10.1126/science.1180568.

    Article  Google Scholar 

  • Bhatia, K., G. Vecchi, H. Murakami, S. Underwood, and J. Kossin, 2018: Projected response of tropical cyclone intensity and intensification in a global climate model. J. Climate, 31, 8281–8303, https://doi.org/10.1175/JCLI-D-17-0898.1.

    Article  Google Scholar 

  • Brandon, C. M., J. D. Woodruff, J. P. Donnelly, and R. M. Sullivan, 2014: How unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding from New York Harbor, Scientific Reports, 4, 7366, https://doi.org/10.1038/srep07366.

    Article  Google Scholar 

  • Camargo, S. J., and A. H. Sobel, 2000: Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15), 2996–3006, https://doi.org/10.1175/JCLI3457.1.

    Article  Google Scholar 

  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    Article  Google Scholar 

  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. WIREs Climate Change, 7, 211–237, https://doi.org/10.1002/wcc.373.

    Article  Google Scholar 

  • Chan, J. C. L., 2006: Comments on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science, 311, 1713, https://doi.org/10.1126/science.1121522.

    Article  Google Scholar 

  • Chan, J. C. L., and J.-E. Shi, 1996: Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 23, 2765–2767, https://doi.org/10.1029/96GL02637.

    Article  Google Scholar 

  • Chan, J. C. L., and J.-E. Shi, 2000: Frequency of typhoon landfall over Guangdong Province of China during the period 1470–1931. International Journal of Climatology, 20, 183–190, https://doi.org/10.1002/(SICI)1097-0088(200002)20:2<183::AID-JOC479>3.0.CO;2-U.

    Article  Google Scholar 

  • Chan, J. C. L., K.-S. Liu, M. Xu, and Q. Z. Yang, 2012: Variations of frequency of landfalling typhoons in East China, 1450–1949. International Journal of Climatology, 32, 1946–1950, https://doi.org/10.1002/joc.2410.

    Article  Google Scholar 

  • Chen, X. M., Y. Q. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235–255, https://doi.org/10.1175/JAS-D-17-0129.1.

    Article  Google Scholar 

  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    Article  Google Scholar 

  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 1324–1334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    Article  Google Scholar 

  • Donnelly, J. P., A. D. Hawkes, P. Lane, D. MacDonald, B.N. Shuman, M. R. Toomey, P. J. van Hengstum, and J.D. Woodruff, 2015: Climate forcing of unprecedented intense-hurricane activity in the last 2000 years. Earth’s Future, 3, 49–65, https://doi.org/10.1002/2014EF000274.

    Article  Google Scholar 

  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353–366, https://doi.org/10.1175/BAMS-85-3-353.

    Article  Google Scholar 

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, https://doi.org/10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688, https://doi.org/10.1038/nature03906.

    Article  Google Scholar 

  • Emanuel, K., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 4797–4802, https://doi.org/10.1175/JCLI3908.1.

    Article  Google Scholar 

  • Emanuel, K., 2008: The hurricane-climate connection. Bull. Amer. Meteor. Soc., 89, ES10–ES20, https://doi.org/10.1175/BAMS-89-5-Emanuel.

    Article  Google Scholar 

  • Emanuel, K., 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. Climate, 28, 8165–8170, https://doi.org/10.1175/JCLI-D-15-0401.1.

    Article  Google Scholar 

  • Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1–15.68, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

    Article  Google Scholar 

  • Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–368, https://doi.org/10.1175/BAMS-89-3-347.

    Article  Google Scholar 

  • Emanuel, K., S. Solomon, D. Folini, S. Davis, and C. Cagnazzo, 2013: Influence of tropical tropopause layer cooling on Atlantic hurricane activity. J. Climate, 26, 2288–2301, https://doi.org/10.1175/JCLI-D-12-00242.1.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485, https://doi.org/10.1038/326483a0.

    Article  Google Scholar 

  • Emanuel, K. A., 1991: The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196, https://doi.org/10.1146/annurev.fl.23.010191.001143.

    Article  Google Scholar 

  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 92–95, https://doi.org/10.1038/nature07234.

    Article  Google Scholar 

  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144(6), 2155–2175, https://doi.org/10.1175/MWR-D-15-0320.1.

    Article  Google Scholar 

  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    Article  Google Scholar 

  • Frappier, A., T. Knutson, K. B. Liu, and K. Emanuel, 2007: Perspective: Coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus A, 59(4), 529–537, https://doi.org/10.1111/j.1600-0870.2007.00250.x.

    Article  Google Scholar 

  • Frappier, A. B., 2008: A stepwise screening system to select storm-sensitive stalagmites: Taking a targeted approach to speleothem sampling methodology. Quaternary International, 187(1), 25–39, https://doi.org/10.1016/j.quaint.2007.09.042.

    Article  Google Scholar 

  • Frappier, A. B., J. Pyburn, A. D. Pinkey-Drobnis, X. F. Wang, D. R. Corbett, and B. H. Dahlin, 2014: Two millennia of tropical cyclone-induced mud layers in a northern Yucatán stalagmite: Multiple overlapping climatic hazards during the Maya Terminal Classic “megadroughts”. Geophys. Res. Lett., 41, 5148–5157, https://doi.org/10.1002/2014GL059882.

    Article  Google Scholar 

  • Fu, H., Y. Q. Wang, M. Riemer, and Q. Q. Li, 2019: Effect of unidirectional vertical wind shear on tropical cyclone intensity change-Lower-layer shear versus upper-layer shear. J. Geophys. Res., 124, 6265–6282, https://doi.org/10.1029/2019JD030586.

    Article  Google Scholar 

  • Gao, J., H. Zhao, P. J. Klotzbach, C. Wang, G. B. Raga, and S. H. Chen, 2020: Possible influence of tropical Indian Ocean Sea surface temperature on the proportion of rapidly intensifying western north pacific tropical cyclones during the extended boreal summer. J. Climate, 33(21), 9129–9143, https://doi.org/10.1175/JCLI-D-20-0087.1.

    Article  Google Scholar 

  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next. J. Geophys. Res., 124, 5696–5723, https://doi.org/10.1029/2018JD030094.

    Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    Article  Google Scholar 

  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511–530, https://doi.org/10.1175/JAS-D-14-0050.1.

    Article  Google Scholar 

  • Hagen, A. B., and C. W. Landsea, 2012: On the classification of extreme Atlantic hurricanes utilizing mid-twentieth-century monitoring capabilities. J. Climate, 25, 4461–4475, https://doi.org/10.1175/JCLI-D-11-00420.1.

    Article  Google Scholar 

  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Available from https://www.systemsengineeringaustralia.com.au/download/WMO_TC_Wind_Averaging_27_Aug_2010.pdf.

  • Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 4644–4661, https://doi.org/10.1175/2011JCLI3761.1.

    Article  Google Scholar 

  • Ho, C.-H., J.-J. Baik, J.-H. Kim, D.-Y. Gong, and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767–1776, https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    Article  Google Scholar 

  • Holland, G. J. and P. J. Webster, 2007: Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 2695–2716, https://doi.org/10.1098/rsta.2007.2083.

    Article  Google Scholar 

  • Hong, C.-C., Y.-K. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate Dyn., 47, 2587–2600, https://doi.org/10.1007/s00382-016-2986-x.

    Article  Google Scholar 

  • Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry, 2006: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science, 312, 94–97, https://doi.org/10.1126/science.1123560.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon et al., eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.

  • Jing, R. Z., and N. Lin, 2020: An environment-dependent probabilistic tropical cyclone model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001975, https://doi.org/10.1029/2019MS001975.

    Article  Google Scholar 

  • Kamahori, H., N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense tropical cyclone days in the western North Pacific. SOLA, 2, 104–107, https://doi.org/10.2151/sola.2006-027.

    Article  Google Scholar 

  • Kang, N. Y., and J. Elsner, 2015: Trade-off between intensity and frequency of global tropical cyclones. Nature Climate Change, 5, 661–664, https://doi.org/10.1038/nclimate2646.

    Article  Google Scholar 

  • Kanada, S., and A. Wada, 2017: Different climatological characteristics, inner-core structures, and intensification processes of simulated intense tropical cyclones between 20-km global and 5-km regional models. J. Climate, 30, 1583–1603, https://doi.org/10.1175/JCLI-D-16-0093.1.

    Article  Google Scholar 

  • Kawase, H., M. Yamaguchi, Y. Imada, S. Hayashi, A. Murata, T. Nakaegawa, T. Miyasaka, and I. Takayabu, 2021: Enhancement of extremely heavy precipitation induced by Typhoon Hagibis (2019) due to historical warming. SOLA, 17A, 7–13, https://doi.org/10.2151/sola.17A-002.

    Article  Google Scholar 

  • Kim, H.-S., G. A. Vecchi, T. R. Knutson, W. G. Anderson, T. L. Delworth, A. Rosati, F. R. Zeng, and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 8034–8054, https://doi.org/10.1175/JCLI-D-13-00475.1.

    Article  Google Scholar 

  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophys. Res. Lett., 33, L10805, https://doi.org/10.1029/2006GL025881.

    Article  Google Scholar 

  • Klotzbach, P. J., and C. W. Landsea, 2015: Extremely intense hurricanes: Revisiting Webster et al. (2005) after 10 years. J. Climate, 28, 7621–7629, https://doi.org/10.1029/2006GL025881.

    Article  Google Scholar 

  • Klotzbach, P. J., M. M. Bell, S. G. Bowen, E. J. Gibney, K. R. Knapp, and C. J. Schreck III, 2020: Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Amer. Meteor. Soc., 101(6), E830–E846, https://doi.org/10.1175/BAMS-D-19-0062.1.

    Article  Google Scholar 

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1.

    Article  Google Scholar 

  • Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1.

    Article  Google Scholar 

  • Knutson, T., and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-18-0194.1.

    Article  Google Scholar 

  • Knutson, T. R., and R. E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dyn., 15, 503–519, https://doi.org/10.1007/s003820050296.

    Article  Google Scholar 

  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477–3495, https://doi.org/10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    Article  Google Scholar 

  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 1018–1021, https://doi.org/10.1126/science.279.5353.1018.

    Article  Google Scholar 

  • Knutson, T. R., R. E. Tuleya, W. X. Shen, and I. Ginis, 2001: Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling. J. Climate, 14, 2458–2468, https://doi.org/10.1175/1520-0442(2001)014<2458:IOCIWO>2.0.CO;2.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157–163, https://doi.org/10.1038/ngeo779.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 6591–6617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    Article  Google Scholar 

  • Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP0/RCP4.5 Scenarios. J. Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    Article  Google Scholar 

  • Kossin, J. P., and S. J. Camargo, 2009: Hurricane track variability and secular potential intensity trends. Climatic Change, 97, 329–337, https://doi.org/10.1007/s10584-009-9748-2.

    Article  Google Scholar 

  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815, https://doi.org/10.1029/2006GL028836.

    Article  Google Scholar 

  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 9960–9976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    Article  Google Scholar 

  • Kossin, J. P., K. R. Knapp, T. L. Olander, and C. S. Velden, 2020: Global increase in major tropical cyclone exceedance probability over the past four decades. Proceedings of the National Academy of Sciences of the United States of America, 117, 11 975–11 980, https://doi.org/10.1073/pnas.1920849117.

    Article  Google Scholar 

  • Landsea, C. W., and Coauthors, 2004: A reanalysis of hurricane Andrew’s intensity. Bull. Amer. Meteor. Soc., 85, 1699–1712, https://doi.org/10.1175/BAMS-85-11-1699.

    Article  Google Scholar 

  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones. Science, 313, 452–454, https://doi.org/10.1126/science.1128448.

    Article  Google Scholar 

  • Landsea, C. W., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic hurricane database. J. Climate, 21, 2138–2168, https://doi.org/10.1175/2007JCLI1119.1.

    Article  Google Scholar 

  • Lee, C. Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2016: Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nature Communications, 7, 10625, https://doi.org/10.1038/ncomms10625.

    Article  Google Scholar 

  • Lee, C.-Y., M. K. Tippett, A. H. Sobel, and S. J. Camargo, 2018: An environmentally forced tropical cyclone hazard model. Journal of Advances in Modeling Earth Systems, 10, 223–241, https://doi.org/10.1002/2017MS001186.

    Article  Google Scholar 

  • Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020a: Statistical-dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios. J. Climate, 33, 4815–4834, https://doi.org/10.1175/JCLI-D-19-0452.1.

    Article  Google Scholar 

  • Lee, T.-C., T. R. Knutson, H. Kamahori, and M. Ying, 2012: Impacts of climate change on tropical cyclones in the western North Pacific Basin. Part I: Past observations. Tropical Cyclone Research and Review, 1, 213–235, https://doi.org/10.6057/2012TCRR02.08.

    Google Scholar 

  • Lee, T.-C., T. R. Knutson, T. Nakaegawa, M. Ying, and E. J. Cha, 2020b: Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region-Part I: Observed changes, detection and attribution. Tropical Cyclone Research and Review, 9, 1–22, https://doi.org/10.1016/j.tcrr.2020.03.001.

    Article  Google Scholar 

  • Lighthill, J., and Coauthors, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147–2157, https://doi.org/10.1175/1520-0477-75.11.2147.

    Google Scholar 

  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 3288–3306, https://doi.org/10.1175/2008MWR2277.1.

    Article  Google Scholar 

  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 3744–3757, https://doi.org/10.1175/2009MWR2713.1.

    Article  Google Scholar 

  • Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878–1882, https://doi.org/10.1002/grl.50091.

    Article  Google Scholar 

  • Liu, K.-B., C. M. Shen, and K.-S. Louie, 2001: A 1,000-year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records. Annals of the Association of American Geographers, 91(3), 453–464, https://doi.org/10.1111/0004-5608.00253.

    Article  Google Scholar 

  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western north pacific tropical cyclone tracks. J. Climate, 21, 4464–4476, https://doi.org/10.1175/2008JCLI2207.1.

    Article  Google Scholar 

  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20, https://doi.org/10.1111/j.2153-3490.1960.tb01279.x.

    Article  Google Scholar 

  • Manganello, J. V., and Coauthors, 2014: Future changes in the western north pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J. Climate, 27, 7622–7646, https://doi.org/10.1175/JCLI-D-13-00678.1.

    Article  Google Scholar 

  • Mann, M. E., and K. A. Emanuel, 2006: Atlantic hurricane trends linked to climate change. Eos, Transactions American Geophysical Union, 87(24), 233–241, https://doi.org/10.1029/2006EO240001.

    Article  Google Scholar 

  • Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105–117, https://doi.org/10.1007/s00302-003-0327-3.

    Article  Google Scholar 

  • Mei, W., and S.-P. Xie, 2016: Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geoscience, 9, 753–757, https://doi.org/10.1038/ngeo2792.

    Article  Google Scholar 

  • Mei, W., S.-P. Xie, F. Primeau, J. C. McWilliams, and C. Pasquero, 2015: Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Advances, 1, e1500014, https://doi.org/10.1126/sciadv.1500014.

    Article  Google Scholar 

  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteorol., 15, 184–195, https://doi.org/10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    Article  Google Scholar 

  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869–3885, https://doi.org/10.1175/2010MWR3378.1.

    Article  Google Scholar 

  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341–354, https://doi.org/10.1175/JAS3591.1.

    Article  Google Scholar 

  • Montgomery, M. T. and R. K. Smith, 2013: Paradigms for tropical cyclone intensification. Tropical Cyclone Research Rep., Tcrr 2, 1–31.

  • Moon, Y., and Coauthors, 2020: Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Climate, 33, 1575–1595, https://doi.org/10.1175/JCLI-D-19-0172.1.

    Article  Google Scholar 

  • Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73–76, https://doi.org/10.2151/sola.2010-019.

    Article  Google Scholar 

  • Murakami, H., T. Li, and P.-C. Hsu, 2014: Contributing factors to the recent high level of accumulated cyclone energy (ACE) and power dissipation index (PDI) in the North Atlantic. J. Climate, 27, 3023–3034, https://doi.org/10.1175/JCLI-D-13-00394.1.

    Article  Google Scholar 

  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 9058–9079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    Article  Google Scholar 

  • Murakami, H., G. A. Vecchi, and S. Underwood, 2017: Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 7, 885–889, https://doi.org/10.1038/s41558-017-0008-6.

    Article  Google Scholar 

  • Murakami, H., E. Levin, T. L. Delworth, R. Gudgel, and P.-C. Hsu, 2018: Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science, 362, 794–799, https://doi.org/10.1126/science.aat6711.

    Article  Google Scholar 

  • Onderlinde, M. J., and D. S. Nolan, 2014: Environmental helicity and its effects on development and intensification of tropical cyclones. J. Atmos. Sci., 71(11), 4308–4320, https://doi.org/10.1175/JAS-D-14-0085.1.

    Article  Google Scholar 

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259–276, https://doi.org/10.2151/jmsj.84.259.

    Article  Google Scholar 

  • Pan, W., M. S. Wang, and Z. M. Man, 2011: Reconstruction and analysis of time characteristics of typhoon impacts along costal areas in Jiangsu and Zhejiang provinces in the Qing Dynasty. Journal of Catastrophology, 26(1), 123–127, https://doi.org/10.3969/j.issn.1000-811X.2011.01.023. (in Chinese with English abstract)

    Google Scholar 

  • Patricola, C. M., and M. F. Wehner, 2018: Anthropogenic influences on major tropical cyclone events. Nature, 563, 339–346, https://doi.org/10.1038/s41586-018-0673-2.

    Article  Google Scholar 

  • Peduzzi, P., B. Chatenoux, H. Dao, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nature Climate Change, 289–294, https://doi.org/10.1038/nclimate1410.

  • Pielke, R. A. Jr., and C. W. Landsea, 1998: Normalized hurricane damages in the United States: 1925–95. Wea. Forecasting, 13, 621–631, https://doi.org/10.1175/1520-0434(1998)013<0621:NHDITU>2.0.CO;2.

    Article  Google Scholar 

  • Pielke, R. A. Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Natural Hazards Review, 9, 29–42, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29.

    Article  Google Scholar 

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175, https://doi.org/10.1175/1520-0405(1981)011<0153:UORTAH>2.0.CO;2.

    Article  Google Scholar 

  • Pun, I.-F., I.-I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett., 40, 4680–4684, https://doi.org/10.1002/grl.50548.

    Article  Google Scholar 

  • Qiu, W. Y., L. G. Wu, and F. M. Ren, 2020: Monsoonal influences on offshore rapid intensification of landfalling typhoons in a sheared environment over the South China Sea. Wea. Forecasting, 35, 623–634, https://doi.org/10.1175/WAF-D-19-0134.1.

    Article  Google Scholar 

  • Reed, K. A., A. M. Stansfield, M. F. Wehner, and C. M. Zarzycki, 2020: Forecasted attribution of the human influence on Hurricane Florence. Science Advances, 6(1), eaaw9253, https://doi.org/10.1126/sciadv.aaw9253.

    Article  Google Scholar 

  • Ren, F. M., J. Liang, G. X. Wu, W. J. Dong, and X. Q. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the Western North Pacific. J. Climate, 24, 5887–5898, https://doi.org/10.1175/2011JCLI3996.1.

    Article  Google Scholar 

  • Roberts, M. J., and Coauthors, 2020: Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multimodel ensemble. J. Climate, 33(7), 2557–2583, https://doi.org/10.1175/JCLI-D-19-0639.1.

    Article  Google Scholar 

  • Scoccimarro, E., P. G. Fogli, K. A. Reed, S. Gualdi, S. Masina, and A. Navarra, 2017: Tropical cyclone interaction with the ocean: The role of high-frequency (subdaily) coupled processes. J. Climate, 30, 145–162, https://doi.org/10.1175/JCLI-D-16-0292.1.

    Article  Google Scholar 

  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    Article  Google Scholar 

  • Shu, S. J., and L. G. Wu, 2009: Analysis of the influence of Saharan air layer on tropical cyclone intensity using AIRS/Aqua data. Geophys. Res. Lett., 32, L09809, https://doi.org/10.1029/2009GL037634.

    Google Scholar 

  • Shu, S. J., F. Q. Zhang, J. Ming, and Y. Wang, 2014: Environmental influences on the intensity changes of tropical cyclones over the western North Pacific. Atmospheric Chemistry and Physics, 14(12), 6329–6342, https://doi.org/10.5194/acp-14-6329-2014.

    Article  Google Scholar 

  • Simpson, R. H., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Technology Conf. on Hurricanes, Miami, FL., American Meteorological Society, D4–1–D4–10.

    Google Scholar 

  • Small, R. J. and Coauthors, 2014: A new synoptic scale resolving global climate simulation using the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2(4), 1065–1094, https://doi.org/10.1002/2014MS000363.

    Article  Google Scholar 

  • Sobel, A. H., S. J. Camargo, T. M. Hall, C.-Y. Lee, M. K. Tippett, and A. A. Wing, 2016: Human Influence on tropical cyclone intensity. Science, 353(6296), 242–246, https://doi.org/10.1126/science.aaf6574.

    Article  Google Scholar 

  • Song, J.-J., Y. Wang, and L. G. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, https://doi.org/10.1029/2009JD013058.

    Article  Google Scholar 

  • Stansfield, A. M., K. A. Reed, and C. M. Zarzycki, 2020: Changes in precipitation from North Atlantic tropical cyclones under RCP scenarios in the variable-resolution community atmosphere model. Geophysical Research Letters, 47, e2019GL086930, https://doi.org/10.1029/2019GL086930.

    Article  Google Scholar 

  • Stocker, T. F., and Coauthors, 2014: Technical summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., Cambridge University Press, 31–116, https://doi.org/10.1017/CBO9781107415324.005.

  • Stowasser, M., Y. Q. Wang, and K. Hamilton, 2007: Tropical cyclone changes in the western north pacific in a global warming scenario. J. Climate, 20, 2378–2396, https://doi.org/10.1175/JCLI4126.1.

    Article  Google Scholar 

  • Sun, Y., and Coauthors, 2017: Impact of ocean warming on tropical cyclone track over the western north pacific: A numerical investigation based on two case studies. J. Geophys. Res., 122, 8617–8630, https://doi.org/10.1002/2017JD026959.

    Article  Google Scholar 

  • Takahashi, C., M. Watanabe, and M. Mori, 2017: Significant aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett., 44, 9496–9504, https://doi.org/10.1002/2017GL075369.

    Article  Google Scholar 

  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817–1830, https://doi.org/10.1175/2010JAS3318.1.

    Article  Google Scholar 

  • Ting, M. F., S. J. Camargo, C. H. Li, and Y. Kushnir, 2015: Natural and forced north Atlantic hurricane potential intensity change in CMIP5 models. J. Climate, 28, 3926–3942, https://doi.org/10.1175/JCLI-D-14-00520.1.

    Article  Google Scholar 

  • Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett., 42, 646–652, https://doi.org/10.1002/2014GL061793.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 1066–1070, https://doi.org/10.1038/nature06423.

    Article  Google Scholar 

  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical north atlantic tropical cyclone activity. J. Climate, 21, 3580–3600, https://doi.org/10.1175/2008JCLI2178.1.

    Article  Google Scholar 

  • Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Climate Dyn., 53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y.

    Article  Google Scholar 

  • Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 1195–1210, https://doi.org/10.1175/BAMS-87-9-1195.

    Article  Google Scholar 

  • Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Climate, 26, 3231–3240, https://doi.org/10.1175/JCLI-D-12-00441.1.

    Article  Google Scholar 

  • Walsh, K. J. E., K. C. Nguyen, and J. L. McGregor, 2004: Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Climate Dyn., 22, 47–56, https://doi.org/10.1007/s00382-003-0362-0.

    Article  Google Scholar 

  • Walsh, K. J. E., and Coauthors, 2015: Hurricanes and climate: The U. S. CLIVAR working group on hurricanes. Bull. Amer. Meteor. Soc., 96(6), 997–1017, https://doi.org/10.1175/BAMS-D-13-00242.1.

    Article  Google Scholar 

  • Walsh, K. J. E., and Coauthors, 2016: Tropical cyclones and climate change. WIREs Climate Change, 7, 65–89, https://doi.org/10.1002/wcc.371.

    Article  Google Scholar 

  • Wang, C., and L. G. Wu, 2015: Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Adv. Atmos. Sci., 32, 613–623, https://doi.org/10.1007/s00376-014-4105-4.

    Article  Google Scholar 

  • Wang, C., and L. G. Wu, 2018a: Projection of north pacific tropical upper-tropospheric trough in CMIP5 models: Implications for changes in tropical cyclone formation locations. J. Climate, 31, 761–774, https://doi.org/10.1175/JCLI-D-17-0292.1.

    Article  Google Scholar 

  • Wang, C., and L. G. Wu, 2018b: Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient and implications for tropical cyclone activity. Earth’s Future, 6, 919–936, https://doi.org/10.1029/2018EF000858.

    Article  Google Scholar 

  • Wang, R. F., and L. G. Wu, 2019: Influence of track changes on the poleward shift of LMI location of western north pacific tropical cyclones. J. Climate, 32, 8437–8445, https://doi.org/10.1175/JCLI-D-18-0855.1.

    Article  Google Scholar 

  • Wang, R. F., L. G. Wu, and C. Wang, 2011: Typhoon track changes associated with global warming. J. Climate, 24, 3748–3752, https://doi.org/10.1175/JCLI-D-11-00074.1.

    Article  Google Scholar 

  • Wang, Y., and C-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-A review. Meteorol. Atmos. Phys., 87, 257–278, https://doi.org/10.1007/s00703-003-0055-6.

    Article  Google Scholar 

  • Wang, Y. Q., 2012: Recent research progress on tropical cyclone structure and intensity. Tropical Cyclone Research and Review, 1, 254–275, https://doi.org/10.6057/2012TCRR02.05.

    Google Scholar 

  • Wang, Y. Q., Y. J. Rao, Z.-M. Tan, and D. Schönemann, 2015: A statistical analysis of the effects of vertical wind shear on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 3434–3453, https://doi.org/10.1175/MWR-D-15-0049.1.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846, https://doi.org/10.1126/science.1116448.

    Article  Google Scholar 

  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. Journal of Advances in Modeling Earth Systems, 6, 980–997, https://doi.org/10.1002/2013MS000276.

    Article  Google Scholar 

  • Wing, A. A., and Coauthors, 2019: Moist static energy budget analysis of tropical cyclone intensification in high-resolution climate models. J. Climate, 32, 6071–6095, https://doi.org/10.1175/JCLI-D-10-0599.1.

    Article  Google Scholar 

  • Wong, M. L. M., and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859–1876, https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    Article  Google Scholar 

  • Wu, L. G., 2007: Impact of Saharan air layer on hurricane peak intensity. Geophys. Res. Lett., 34, L09802, https://doi.org/10.1029/2007GL029564.

    Article  Google Scholar 

  • Wu, L. G., and S. A. Braun, 2004: Effects of environmentally induced asymmetries on hurricane intensity: A numerical study. J. Atmos. Sci., 61, 3065–3081, https://doi.org/10.1175/JAS-3343.1.

    Article  Google Scholar 

  • Wu, L. G., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686–1698, https://doi.org/10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    Article  Google Scholar 

  • Wu, L. G. and B. Wang, 2008: What has changed the proportion of intense hurricanes in the last 30 years. J. Climate, 21, 1432–1439, https://doi.org/10.1175/2007JCLI1715.1.

    Article  Google Scholar 

  • Wu, L. G., and H. K. Zhao, 2012: Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Climate, 25, 89–98, https://doi.org/10.1175/2011JCLI4139.1.

    Article  Google Scholar 

  • Wu, L. G., B. Wang, and S. A. Braun, 2005: Impacts of air-sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 3299–3314, https://doi.org/10.1175/MWR3030.1.

    Article  Google Scholar 

  • Wu, L. G., B. Wang, and S. A. Braun, 2008: Implications of tropical cyclone power dissipation index. International Journal of Climatology, 28, 727–731, https://doi.org/10.1002/joc.1573.

    Article  Google Scholar 

  • Wu, L. G., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 1537–1542, https://doi.org/10.1002/2015GL063450.

    Article  Google Scholar 

  • Wu, L. G., R. F. Wang and X. F. Feng, 2018: Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980–2015. Earth’s Future, 6, 1518–1527, https://doi.org/10.1029/2018EF000973.

    Article  Google Scholar 

  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western north pacific tropical cyclone activity using a regional model. J. Climate, 27, 3405–3424, https://doi.org/10.1175/JCLI-D-12-00830.1.

    Article  Google Scholar 

  • Wu, M.-C., K.-H. Yeung, and W.-L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Transactions American Geophysical Union, 87, 537–538, https://doi.org/10.1029/2006EO480001.

    Article  Google Scholar 

  • Yamada, Y., K. Oouchi, M. Satoh, H. Tomita, and W. Yanase, 2010: Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-system-resolving approach. Geophys. Res. Lett., 37, L07709, https://doi.org/10.1029/2010GL042518.

    Article  Google Scholar 

  • Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A. T. Noda, M. Nakano, and T. Nasuno, 2017: Response of tropical cyclone activity and structure to global warming in a high-resolution global nonhydrostatic model. J. Climate, 30, 9703–9724, https://doi.org/10.1175/JCLI-D-17-0068.1.

    Article  Google Scholar 

  • Ying, M., T. R. Knutson, T.-C. Lee, H. Kamahori, 2012: The second assessment report on the influence of climate change on tropical cyclones in the typhoon committee region. ESCAP/WMO Typhoon Committee, TC/TD-No. 0004.

  • Yu, H., C. M. Hu, and L. Y. Jiang, 2007: Comparison of three tropical cyclone intensity datasets. Acta Meteorologica Sinica, 21, 121–128.

    Google Scholar 

  • Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 23–35, https://doi.org/10.2151/jmsj.79.23.

    Article  Google Scholar 

  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. Journal of Advances in Modeling Earth Systems, 6, 805–828, https://doi.org/10.1002/2014MS000352.

    Article  Google Scholar 

  • Zeng, Z. H., Y. Q. Wang, and C. C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 38–59, https://doi.org/10.1175/MWR3278.1.

    Article  Google Scholar 

  • Zeng, Z. H., L. S. Chen, and Y. Q. Wang, 2008: An observational study of environmental dynamical control of tropical cyclone intensity in the Atlantic. Mon. Wea. Rev., 136, 3307–3322, https://doi.org/10.1175/2008MWR2388.1.

    Article  Google Scholar 

  • Zeng, Z. H., Y. Q. Wang, and L. S. Chen, 2010: A statistical analysis of vertical shear effect on tropical cyclone intensity change in the North Atlantic. Geophys. Res. Lett., 37, L02802, https://doi.org/10.1029/2009GL041788.

    Article  Google Scholar 

  • Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 5923–5941, https://doi.org/10.1175/JCLI-D-16-0597.1.

    Article  Google Scholar 

  • Zhang, Q., L. G. Wu, and Q. F. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–496, https://doi.org/10.1175/2008BAMS2631.1.

    Article  Google Scholar 

  • Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381–398, https://doi.org/10.1175/JCLI-D-15-0282.1.

    Article  Google Scholar 

  • Zhang, W., G. Villarini, G. A. Vecchi, and H. Murakami, 2018: Impacts of the Pacific Meridional Mode on landfalling North Atlantic tropical cyclones. Climate Dyn., 50, 991–1006, https://doi.org/10.1007/s00382-017-3656-3.

    Article  Google Scholar 

  • Zhang, X. P., Y. Ye, and X. Q. Fang, 2012: Reconstruction of typhoons in the Yangtze River Delta during 1644–1949AD based on historical chorographies. Journal of Geographical Sciences, 22, 810–824, https://doi.org/10.1007/s11442-012-0965-7.

    Article  Google Scholar 

  • Zhao, H. K., and L. G. Wu, 2014: Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteorol. Atmos. Phys., 125, 89–101, https://doi.org/10.1007/s00703-014-0322-8.

    Article  Google Scholar 

  • Zhao, H. K. and C. Z. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the Western North Pacific. Climate Dyn., 47, 315–328, https://doi.org/10.1007/s00382-015-2837-1.

    Article  Google Scholar 

  • Zhao, H. K. and C. Z. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275–288, https://doi.org/10.1007/s00382-018-4136-0.

    Article  Google Scholar 

  • Zhao, H. K., L. G. Wu, and W. C. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89(3), 243–253, https://doi.org/10.2151/jmsj.2011-305.

    Article  Google Scholar 

  • Zhao, H. K., L. G. Wu, and R. F. Wang, 2014: Decadal variations of intense tropical cyclones over the western north pacific during 1948–2010. Adv. Atmos. Sci., 31(1), 57–65, https://doi.org/10.1007/s00376-013-3011-5.

    Article  Google Scholar 

  • Zhao, H. K., X. Y. Duan, G. B. Raga, and P. J. Klotzbach, 2018a: Changes in characteristics of rapidly intensifying western north pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 8163–8179, https://doi.org/10.1175/JCLI-D-18-0029.1.

    Article  Google Scholar 

  • Zhao, H. K., P. J. Klotzbach, and S. H. Chen, 2020: Dominant influence of ENSO-like and global sea surface temperature patterns on changes in prevailing boreal summer tropical cyclone tracks over the western North Pacific. J. Climate, 33(22), 9551–9565, https://doi.org/10.1175/JCLI-D-19-0774.1.

    Article  Google Scholar 

  • Zhao, J. W., R. F. Zhan, Y. Q. Wang, and H. M. Xu, 2018b: Contribution of the interdecadal pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Climate, 31, 8211–8224, https://doi.org/10.1175/JCLI-D-18-0202.1.

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China (Grant Nos. 41730961, 41675051, 41675072, and 41922033).

Author information

Authors and Affiliations

  1. Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, 200438, China

    Liguang Wu

  2. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044, China

    Haikun Zhao, Chao Wang, Jian Cao & Jia Liang

  3. Innovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, 518057, China

    Liguang Wu

Authors
  1. Liguang Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Haikun Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Chao Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jian Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jia Liang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Liguang Wu.

Additional information

Article Highlights

• Our current understanding of the effect of climate change on tropical cyclone intensity is reviewed.

• Factors controlling the basin-wide intensity can be different from individual tropical cyclones.

• Issues on the effect of climate change on tropical cyclone intensity are discussed.

This paper is a contribution to the special issue on Climate Change and Variability of Tropical Cyclone Activity.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Zhao, H., Wang, C. et al. Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review. Adv. Atmos. Sci. 39, 205–221 (2022). https://doi.org/10.1007/s00376-021-1026-x

Download citation

  • Received: 12 January 2021

  • Revised: 10 October 2021

  • Accepted: 12 November 2021

  • Published: 21 January 2022

  • Issue Date: February 2022

  • DOI: https://doi.org/10.1007/s00376-021-1026-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • tropical cyclone
  • climate change
  • intensity change

关键词

  • 热带气旋
  • 气候变化
  • 强度变化
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Climate Change and Variability of Tropical Cyclone Activity

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.