Abstract
Based on C-LSAT2.0, using high- and low-frequency components reconstruction methods, combined with observation constraint masking, a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed. These ensemble versions have been merged with the ERSSTv5 ensemble dataset, and an upgraded version of the CMST-Interim dataset with 5° × 5° resolution has been developed. The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data. After reconstruction, the data coverage before 1950 increased from 78%–81% of the original CMST to 81%–89%. The total coverage after 1955 reached about 93%, including more than 98% in the Northern Hemisphere and 81%–89% in the Southern Hemisphere. Through the reconstruction ensemble experiments with different parameters, a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMST-Interim. In comparison with the original CMST, the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century, which shows that the global warming trend is further amplified. The global warming trends are updated from 0.085 ± 0.004°C (10 yr)−1 and 0.128 ± 0.006°C (10 yr)−1 to 0.089 ± 0.004°C (10 yr)−1 and 0.137 ± 0.007°C (10 yr)−1, respectively, since the start and the second half of 20th century.
摘 要
基于C-LSAT2.0陆表温度数据集, 本文作者采用高、低频分量重建的方法, 结合观测约束裁剪, 发展了1850–2018年集合 (756个成员) 重建C-LSAT2.0数据集. 在此基础上, 作者将C-LSAT2.0与ERSSTv5集合数据集融合, 发展了分辨率为5°×5°的全球表面温度数据集CMST-Interim. 该数据集的全球覆盖率较原GMST有明显的提升:在1950年以前由原来CMST的78%–81%增加到81%–99%之间, 1955年以后达到93%左右, 其中北半球超过了98%, 南半球在81%–89%之间. 不同参数的重建集合试验为C-LSAT2.0及CMST-Interim的不确定性评估提供了很好的基础. 与原CMST相比, CMST-Interim的全球平均温度距平在19世纪下半叶稍降低, 在21世纪则略升高, 从而证实了全球变暖进一步扩大的趋势: 1900–2018年和1950–2018年的全球变暖趋势明显增加, 从基于原CMST的 0.085 ± 0.004℃ (10 yr) −1 和 0.128 ± 0.006℃ (10 yr) −分别增加到了基于CMST-Interim的 0.089 ± 0.004°C (10 yr) −1 和 0.137 ± 0.007°C (10 yr) −1.
References
Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548.
Chao, L. Y., B. Y. Huang, Y. J. Yang, P. Jones, J. Y. Cheng, Y. Yang, and Q. X. Li, 2020: A new evaluation of the role of urbanization to warming at various spatial scales: Evidence from the Guangdong-Hong Kong-Macau Region, China. Geophys. Res. Lett., 47, e2020GL089152, https://doi.org/10.1029/2020GL089152.
Cheng, J. Y., Q. X. Li, L. Y. Chao, S. Maity, B. Y. Huang, and P. Jones, 2020: Development of high resolution and homogenized gridded land surface air temperature data: A case study over pan-east Asia. Frontiers in Environmental Science, 8, 588570, https://doi.org/10.3389/fenvs.2020.588570.
Cowtan, K., and R. G. Way, 2014: Coverage bias in the Had-CRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 1935–1944, https://doi.org/10.1002/qj.2297.
Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48(4), RG404, https://doi.org/10.1029/2010RG000345.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Huang, B. Y., and Coauthors, 2015: Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 3119–3142, https://doi.org/10.1175/JCLI-D-15-0430.1.
Huang, B. Y., and Coauthors, 2017a: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Huang, B. Y., and Coauthors, 2020: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J. Climate, 33, 1351–1379, https://doi.org/10.1175/JCLI-D-19-0395.1.
Huang, J. B., and Coauthors, 2017b: Recently amplified arctic warming has contributed to a continual global warming trend. Nature Climate Change, 7, 875–879, https://doi.org/10.1038/s41558-017-0009-5.
Jones, P., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33(3), 269–282, https://doi.org/10.1007/s00376-015-5194-4.
Kadow, C., D. M. Hall, and U. Ulbrich, 2020: Artificial intelligence reconstructs missing climate information. Nature Geoscience, 13, 408–413, https://doi.org/10.1038/s41561-020-0582-5.
Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469–1472, https://doi.org/10.1126/science.aaa5632.
Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.
Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res., 124(12), 6307–6326, https://doi.org/10.1029/2018JD029522.
Lewandowsky, S., J. S. Risbey, and N. Oreskes, 2016: The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723–733, https://doi.org/10.1175/BAMS-D-14-00106.1.
Li, Q. X., and Q. P. Tu, 2000: Interpolation and primary analysis of northern hemisphere land surface precipitation in the past 100 years. Journal of Nanjing Institute of Meteorology, 23(4), 528–535, https://doi.org/10.3969/j.issn.1674-7097.2000.04.009. (in Chinese with English abstract)
Li, Q. X., and Q. P. Tu, 2002: The regional characters of annual precipitation in northern hemisphere land surface and China and their correlation. Journal of Nanjing Institute of Meteorology, 25(1), 92–99, https://doi.org/10.3969/j.issn.l674-7097.2002.01.012. (in Chinese with English abstract)
Li, Q. X., W. J. Dong, W. Li, X. R. Gao, P. Jones, J. Kennedy, and D. Parker, 2010: Assessment of the uncertainties in temperature change in China during the last century. Chinese Science Bulletin, 55, 1974–1982, https://doi.org/10.1007/s11434-010-3209-1.
Li, Q. X., W. B. Sun, B. Y. Huang, W. J. Dong, X. L. Wang, P. M. Zhai, and P. Jones, 2020: Consistency of global warming trends strengthened since 1880s. Science Bulletin, 65(20), 1709–1712, https://doi.org/10.1016/j.scib.2020.66.009.
Li, Q. X., and Coauthors, 2021: An updated evaluation of the global mean Land Surface Air Temperature and Surface Temperature trends based on CLSAT and CMST. Climate Dyn., https://doi.org/10.1007/s00382-020-05502-0.
Medhaug, I., M. B. Stolpe, E. M. Fischer, and R. Knutti, 2017: Reconciling controversies about the’ global warming hiatus. Nature, 545, 41–47, https://doi.org/10.1038/nature22315.
Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.
Morice, C. P., and Coauthors, 2020: An updated assessment of near-surface temperature change from 1850: The Had-CRUT5 dataset. J. Geophys. Res., https://doi.org/10.1029/2019JD032361.
Osborn, T. J., P. D. Jones, D. H. Lister, C. P. Morice, I. R. Simpson, J. P. Winn, E. Hogan, and I. C. Harris, 2020: Land surface air temperature variations across the globe updated to 2019: The CRUTEM5 dataset. J. Geophys. Res., 125, e2019JD032352, https://doi.org/10.1029/2019JD032352.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, 1992: LU decomposition and its applications. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 34–42.
Rohde, R., and Coauthors, 2013: A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinformatics & Geostatistics: An Overview, 1, 1, https://doi.org/10.4172/2327-4581.1000101.
Simmons, A. J., P. Berrisford, D. P. Dee, H. Hersbach, S. Hirahara, and J. N. Thépaut, 2017: A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Quart. J. Roy. Meteor. Soc., 143, 101–119, https://doi.org/10.1002/qj.2949.
Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, https://doi.org/10.1175/2007JCLI2100.1.
Thorne, P. W., and Coauthors, 2011: Guiding the creation of a comprehensive surface temperature resource for twenty-first- century climate science. Bull. Amer. Meteor. Soc., 92(11), ES40–ES47, https://doi.org/10.1175/2011BAMS3124.1.
van den Dool, H. M., S. Saha, and Å. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13(8), 1421–1435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.
Vose, R. S., and Coauthors, 2012: NOAA’s merged land-ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93(11), 1677–1685, https://doi.org/10.1175/BAMS-D-11-00241.1.
Xu, W. H., and Coauthors, 2018: A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dyn., 50, 2513–2536, https://doi.org/10.1007/s00382-017-3755-1.
Yun, X., B. Y. Huang, J. Y. Cheng, W. H. Xu, S. B. Qiao, and Q. X. Li, 2019: A new merge of global surface temperature datasets since the start of the 20th Century. Earth System Science Data, 11, 1629–1643, https://doi.org/10.5194/essd-11-1629-2019.
Acknowledgements
This study is supported by the Natural Science Foundation of China (Grant: 41975105) and the National Key R&D Program of China (Grant: 2018YFC1507705; 2017YFC1502301).
Author information
Authors and Affiliations
Corresponding author
Additional information
Data access
The reconstructed C-LSAT2.0 and the upgraded version CMST-Interim datasets are available from http://atmos.sysu.edu.cn/ResearchDownload.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Sun, W., Li, Q., Huang, B. et al. The Assessment of Global Surface Temperature Change from 1850s: The C-LSAT2.0 Ensemble and the CMST-Interim Datasets. Adv. Atmos. Sci. 38, 875–888 (2021). https://doi.org/10.1007/s00376-021-1012-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-021-1012-3
Key words
- C-LSAT2.0 ensemble datasets
- CMST-Interim
- EOTs
- high- and low-frequency components
- reconstruction
关键词
- C-LSAT2.0集合数据集
- CMST-Interim
- EOTs
- 高频和低频分量
- 重建