Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.
Google Scholar
Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798.
Google Scholar
Back, L. E., and C. S. Bretherton, 2009: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 6477–6497, https://doi.org/10.1175/2009JCLI2393.1.
Google Scholar
Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol., 3, 396–409, https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2.
Google Scholar
Chen, W., L. Wang, J. Feng, Z. P. Wen, T. J. Ma, X. Q. Yang, and C. H. Wang, 2019: Recent progress in studies of the variabilities and mechanisms of the East Asian monsoon in a changing climate. Adv. Atmos. Sci., 36, 887–901, https://doi.org/10.1007/s00376-019-8230-y.
Google Scholar
Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 1027–1041, https://doi.org/10.1007/s00382-015-2630-l.
Google Scholar
Chen, Z. S., Y. Du, Z. P. Wen, R. G. Wu, and C. Z. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dyn., 50, 4707–4719, https://doi.org/10.1007/s00382-017-3899-z.
Google Scholar
Chowdary, J. S., S.-P. Xie, H. Tokinaga, Y. M. Okumura, H. Kubota, N. Johnson, and X.-T. Zheng, 2012: Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870–2007. J. Climate, 25, 1722–1744, https://doi.org/10.1175/JCLI-D-11-00070.1.
Google Scholar
Chowdary, J. S., H. S. Harsha, C. Gnanaseelan, G. Srinivas, A. Parekh, P. Pillai, and C. V. Naidu, 2017: Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dyn., 48, 2707–2727, https://doi.org/10.1007/s00382-016-3233-l.
Google Scholar
Chowdary, J. S., K. M. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian jet streams as conduits for East Asian monsoon variability. Current Climate Change Reports, 5, 233–244, https://doi.org/10.1007/s40641-019-00134-x.
Google Scholar
Chu, J.-E., K.-J. Ha, J.-Y. Lee, B. Wang, B.-H. Kim, and C. E. Chung, 2014: Future change of the Indian Ocean basin-wide and dipole modes in the CMIP5. Climate Dyn., 43, 535–551, https://doi.org/10.1007/s00382-013-2002-7.
Google Scholar
Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). University Corporation for Atmospheric Research, No. NCAR/TN-464+STR, 214 pp, https://doi.org/10.5065/D63N21CH.
Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.
Google Scholar
Du, Y., S.-P. Xie, G. Huang, and K. M. Hu, 2009: Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J. Climate, 22, 2023–2038, https://doi.org/10.1175/2008JCLI2590.l.
Google Scholar
Efron, B., 1979: Bootstrap methods: Another look at the jack-knife. Annals of Statistics, 7, 1–26, https://doi.org/10.1214/aos/1176344552.
Google Scholar
Feng, J., W. Chen, C.-Y. Tam, and W. Zhou, 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. International Journal of Climatology, 31, 2091–2101, https://doi.org/10.1002/joc.2217.
Google Scholar
Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO Phases? J. Climate, 27, 2682–2698, https://doi.org/10.1175/JCLI-D-13-00015.l.
Google Scholar
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, https://doi.org/10.1002/qj.49710644905.
Google Scholar
Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Available from https://doi.org/10.24381/cds.6860a573.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Google Scholar
Huang, G., K. M. Hu, and S.-P. Xie, 2010: Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: An atmospheric GCM study. J. Climate, 23, 5294–5304, https://doi.org/10.1175/2010JCLI3577.1.
Google Scholar
Huang R. H., R. H. Zhang, and Q. Y. Zhang, 2000: The 1997/98 ENSO cycle and its impact on summer climate anomalies in East Asia. Adv. Atmos. Sci., 17, 348–362, https://doi.org/10.1007/s00376-000-0028-3.
Google Scholar
Jiang, W. P., G. Huang, K. M. Hu, R. G. Wu, H. N. Gong, X. L. Chen, and W. C. Tao, 2017: Diverse relationship between ENSO and the Northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace. J. Climate, 30, 109–127, https://doi.org/10.1175/JCLI-D-16-0365.1.
Google Scholar
Jiang, W. P., G. Huang, P. Huang, R. G. Wu, K. M. Hu, and W. Chen, 2019: Northwest Pacific anticyclonic anomalies during post-El Niño summers determined by the pace of El Niño decay. J. Climate, 32, 3487–3503, https://doi.org/10.1175/JCLI-D-18-0793.1.
Google Scholar
Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.
Google Scholar
Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J. Climate, 25, 7574–7589, https://doi.org/10.1175/JCLI-D-12-00009.1.
Google Scholar
Li, T., B. Wang, B. Wu, T. J. Zhou, C.-P. Chang, and R. H. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, https://doi.org/10.1007/s13351-017-7147-6.
Google Scholar
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Google Scholar
Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43, https://doi.org/10.2151/jmsj1965.44.1_25.
Google Scholar
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.
Google Scholar
Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.
Google Scholar
Tao, W. C., G. Huang, K. M. Hu, X. Qu, G. H. Wen, and H. N. Gong, 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean basin mode and their relationship under global warming in CMIP5 models. International Journal Climatology, 35, 391–407, https://doi.org/10.1002/joc.3987.
Google Scholar
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Google Scholar
Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248, https://doi.org/10.1007/s00376-017-7016-3.
Google Scholar
Wei, K., C. J. Ouyang, H. T. Duan, Y. L. Li, M. X. Chen, J. Ma, H. C. An, and S. Zhou, 2020: Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China. The Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.
Google Scholar
Wu, B., T. J. Zhou, and T. Li, 2009: Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers. J. Climate, 22, 4398–4405, https://doi.org/10.1175/2008JCLI2710.l.
Google Scholar
Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 2974–2986, https://doi.org/10.1175/JCLI-D-15-0901.1.
Google Scholar
Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635, https://doi.org/10.1175/JCLI-D-16-0489.1.
Google Scholar
Wu, Z. W., B. Wang, J. P. Li, and F.-F. Jin, 2009b: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res. Atmos., 114, D18120, https://doi.org/10.1029/2009JD011733.
Google Scholar
Xiang, B. Q., B. Wang, W. D. Yu, and S. B. Xu, 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 2349–2354, https://doi.org/10.1002/grl.50431.
Google Scholar
Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1.
Google Scholar
Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. M. Hu, and Q. Y. Liu, 2010: Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s. J. Climate, 23, 3352–3368, https://doi.org/10.1175/2010JCLI3429.1.
Google Scholar
Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432, https://doi.org/10.1007/s00376-015-5192-6.
Google Scholar
Yu, J.-Y., X. Wang, S. Yang, H. Paek, and M. Y. Chen, 2017: The Changing El Niño-Southern oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, S.-Y. S. Wang, et al., Eds., AGU, 3–38, https://doi.org/10.1002/9781119068020.chl.
Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, https://doi.org/10.1175/JCLI-D-11-00576.1.
Google Scholar
Zhang, Q., Y. F. Qian, and X. H. Zhang, 2000: Interannual and interdecadal variations of the South Asia high. Chinese Journal of Atmospheric Sciences, 24, 67–78, https://doi.org/10.3878/j.issn.1006-9895.2000.01.07. (in Chinese with English abstract)
Google Scholar
Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Science China Earth Sciences, 60, 1124–1132, https://doi.org/10.1007/s11430-016-9026-x.
Google Scholar
Zheng, F., X.-H. Fang, J.-Y. Yu, and J. Zhu, 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657, https://doi.org/10.1002/2014GL062125.
Google Scholar
Zheng, X.-T., S.-P. Xie, and Q.-Y. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 6146–6164, https://doi.org/10.1175/2011JCLI4169.1.
Google Scholar