Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Added-value of GEO-hyperspectral Infrared Radiances for Local Severe Storm Forecasts Using the Hybrid OSSE Method

  • Original Paper
  • Open access
  • Published: 01 June 2021
  • Volume 38, pages 1315–1333, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Added-value of GEO-hyperspectral Infrared Radiances for Local Severe Storm Forecasts Using the Hybrid OSSE Method
Download PDF
  • Pei Wang1,
  • Zhenglong Li1,
  • Jun Li1 &
  • …
  • Timothy J. Schmit2 
  • 847 Accesses

  • 42 Altmetric

  • 5 Mentions

  • Explore all metrics

Abstract

High spectral resolution (or hyperspectral) infrared (IR) sounders onboard low earth orbiting satellites provide high vertical resolution atmospheric information for numerical weather prediction (NWP) models. In contrast, imagers on geostationary (GEO) satellites provide high temporal and spatial resolution which are important for monitoring the moisture associated with severe weather systems, such as rapidly developing local severe storms (LSS). A hyperspectral IR sounder onboard a geostationary satellite would provide four-dimensional atmospheric temperature, moisture, and wind profiles that have both high vertical resolution and high temporal/spatial resolutions. In this work, the added-value from a GEO-hyperspectral IR sounder is studied and discussed using a hybrid Observing System Simulation Experiment (OSSE) method. A hybrid OSSE is distinctively different from the traditional OSSE in that, (a) only future sensors are simulated from the nature run and (b) the forecasts can be evaluated using real observations. This avoids simulating the complicated observation characteristics of the current systems (but not the new proposed system) and allows the impact to be assessed against real observations. The Cross-track Infrared Sounder (CrIS) full spectral resolution (FSR) is assumed to be onboard a GEO for the impact studies, and the GEO CrIS radiances are simulated from the ECMWF Reanalysis v5 (ERA5) with the hyperspectral IR all-sky radiative transfer model (HIRTM). The simulated GEO CrIS radiances are validated and the hybrid OSSE system is verified before the impact assessment. Two LSS cases from 2018 and 2019 are selected to evaluate the value-added impacts from the GEO CrIS-FSR data. The impact studies show improved atmospheric temperature, moisture, and precipitation forecasts, along with some improvements in the wind forecasts. An added-value, consisting of an overall 5% Root Mean Square Error (RMSE) reduction, was found when a GEO CrIS-FSR is used in replacement of LEO ones indicating the potential for applications of data from a GEO hyperspectral IR sounder to improve local severe storm forecasts.

摘要

地球静止轨道卫星上的高光谱红外大气探测仪能够为数值天气预报提供高频次三维大气温度、湿度和风廓线信息,对于监测和预报高影响天气系统(例如快速发展的局地强风暴系统)至关重要。本文提出了混合观测系统模拟试验(OSSE)方法,并结合静止卫星上的高光谱红外大气探测仪数据进行模拟和影响试验。与传统的OSSE相比,混合OSSE只需要对未来卫星观测系统进行模拟,既避免了模拟现有观测系统的复杂性,又可以利用实际的观测数据对预报结果进行验证和评估。采用欧洲中期天气预报中心的ERA5再分析数据作为高时空分辨率大气场景来模拟静止气象卫星上的高光谱红外大气探测仪观测结果,通过对两个典型的强风暴天气过程进行模拟和影响试验,发现在现有观测系统的基础上加入静止卫星高光谱红外大气探测仪的观测数据可以进一步改善大气温度、湿度、风场、降水等预报,总体上降低5%左右的均方根误差。这表明基于静止卫星的高光谱红外大气探测仪观测,能够通过数据同化改善强风暴天气系统的预报。

Article PDF

Download to read the full article text

Similar content being viewed by others

Value-added Impact of Geostationary Hyperspectral Infrared Sounders on Local Severe Storm Forecasts—via a Quick Regional OSSE

Article 22 August 2018

Assimilation of Geostationary Hyperspectral Infrared Sounders (GeoHIS): Progresses and Perspectives

Chapter © 2023

Use of Remote Sensing in Weather and Climate Forecasts

Chapter © 2023

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Atmospheric Optics
  • Earth System Sciences
  • Geophysics
  • Global South and STS
  • Space Weather
  • Climate and Earth System Modelling
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Adam, S., A. Behrendt, T. Schwitalla, E. Hammann, and V. Wulfmeyer, 2016: First assimilation of temperature lidar data into an NWP model: Impact on the simulation of the temperature field, inversion strength and PBL depth. Quart. J. Roy. Meteor. Soc., 142, 2882–2896, https://doi.org/10.1002/qj.2875.

    Article  Google Scholar 

  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111–130, https://doi.org/10.2151/jmss1965.75.1B_111.

    Article  Google Scholar 

  • Atlas, R., L. Bucci, B. Annane, R. Hoffman, and S. Murillo, 2015: Observing system simulation experiments to assess the potential impact of new observing systems on hurricane forecasting. Marine Technology Society Journal, 49, 140–148, https://doi.org/10.4031/MTSJ.49.6.3.

    Article  Google Scholar 

  • Bachmann, K., C. Keil, and M. Weissmann, 2018: Impact of radar data assimilation and orography on predictability of deep convection. Quart. J. Roy. Meteor. Soc., 145, 117–130, https://doi.org/10.1002/qj.3412.

    Article  Google Scholar 

  • Balogh, W., and T. Kurino, 2020: The world meteorological organization and space-based observations for weather, climate, water and related environmental services. Space Capacity Building in the XXI Century, S. Ferretti, Ed., Springer, 223–232.

  • Bauer, P., and Coauthors, 2011: Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc., 137, 1934–1951, https://doi.org/10.1002/qj.905.

    Article  Google Scholar 

  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 1669–1694, https://doi.org/10.1175/MWR-D-15-0242.1.

    Article  Google Scholar 

  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009.

    Article  Google Scholar 

  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033–2056, https://doi.org/10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    Article  Google Scholar 

  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239–250, https://doi.org/10.1002/qj.366.

    Article  Google Scholar 

  • Chen, Y., Y. Han, P. Van Delst, and F. Z. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, https://doi.org/10.1029/2009JD013379.

    Article  Google Scholar 

  • Chen, Y., Y. Han, and F. Z. Weng, 2012: Comparison of two transmittance algorithms in the community radiative transfer model: Application to AVHRR. J. Geophys. Res., 117, D06206, https://doi.org/10.1029/2011JD016656.

    Google Scholar 

  • Chen, Y., Y. Han, and F. Z. Weng, 2013: Detection of earth-rotation Doppler shift from suomi national polar-orbiting partnership cross-track infrared sounder. Appl. Opt., 52, 6250–6257, https://doi.org/10.1364/AO.52.006250.

    Article  Google Scholar 

  • Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 20–32, https://doi.org/10.1175/JTECH-D-13-00059.1.

    Article  Google Scholar 

  • Eicker, A., L. Jensen, V. Wöhnke, H. Dobslaw, A. Kvas, T. Mayer-Gürr, and D. Robert, 2020: Daily GRACE satellite data evaluate short-term hydro-meteorological fluxes from global atmospheric reanalyses. Scientific Reports, 10, 4504, https://doi.org/10.1038/s41598-020-61166-0.

    Article  Google Scholar 

  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 2577–2592, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    Article  Google Scholar 

  • Errico, R. M., T. Vukicevic, P. Courtier, J. Derber, and J. F. Louis, 1993a: Workshop on adjoint applications in dynamic meteorology 23–28 August 1992, pacific grove, California. Bull. Amer. Meteor. Soc., 74, 845–847.

    Google Scholar 

  • Errico, R. M., T. VukiĆEviĆ, and K. Raeder, 1993b: Examination of the accuracy of a tangent linear model. Tellus A: Dynamic Meteorology and Oceanography, 45, 462–477, https://doi.org/10.3402/tellusa.v45i5.15046.

    Article  Google Scholar 

  • Garand, L., M. Buehner, S. Heilliette, S. R. Macpherson, and A. Beaulne, 2013: Satellite radiance assimilation impact in new Canadian ensemble-variational system. Proc. EUMETSAT Meteorological Satellite Conf., Vienna, Austria, EUMETSAT.

    Google Scholar 

  • Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217, https://doi.org/10.1002/qj.3202.

    Article  Google Scholar 

  • Graham, R. J., S. R. Anderson, and M. J. Bader, 2000: The relative utility of current observation systems to global-scale NWP forecasts. Quart. J. Roy. Meteor. Soc., 126, 2435–2460, https://doi.org/10.1002/qj.49712656805.

    Article  Google Scholar 

  • Han, H., J. Li, M. Goldberg, P. Wang, J. L. Li, Z. L. Li, B.-J. Sohn, and J. Li, 2016a: Microwave sounder cloud detection using a collocated high-resolution imager and its impact on radiance assimilation in tropical cyclone forecasts. Mon. Wea. Rev., 144, 3927–3959, https://doi.org/10.1175/MWR-D-15-0300.1.

    Article  Google Scholar 

  • Han, Y., P. van Delst, Q. H. Liu, F. Z. Weng, B. H. Yan, R. Treadon, and J. Derber, 2006b: JCSDA community radiative transfer model (CRTM): Version 1. NOAA Tech. Rep. 122.

  • Hersbach, H., and D. Dee, 2017: ERA5 reanalysis is in production. ECMWF Newsletter 147, ECMWF.

  • Hilton, F., N. C. Atkinson, S. J. English, and J. R. Eyre, 2009: Assimilation of IASI at the Met Office and assessment of its impact through observing system experiments. Quart. J. Roy. Meteor. Soc., 135, 495–505, https://doi.org/10.1002/qj.379.

    Article  Google Scholar 

  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 1601–1616, https://doi.org/10.1175/BAMS-D-15-00200.1.

    Article  Google Scholar 

  • Hooker, J., G. Duveiller, and A. Cescatti, 2018: A global dataset of air temperature derived from satellite remote sensing and weather stations. Scientific Data, 5, 180246, https://doi.org/10.1038/sdata.2018.246.

    Article  Google Scholar 

  • Hu, M., G. Q. Ge, C. H. Zhou, D. Stark, H. Shao, K. Newman, J. Beck, and X. Zhang, 2018: Gridpoint Statistical Interpolation (GSI): User’s guide version 3.7. Development Testbed Center.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

  • Jones, T. A., S. Koch, and Z. L. Li, 2017: Assimilating synthetic hyperspectral sounder temperature and humidity retrievals to improve severe weather forecasts. Atmospheric Research, 186, 9–25, https://doi.org/10.1016/j.atmosres.2016.11.004.

    Article  Google Scholar 

  • Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the met office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331–3342, https://doi.org/10.1175/MWR-D-12-00232.1.

    Article  Google Scholar 

  • Kalinga, O. A., and T. Y. Gan, 2010: Estimation of rainfall from infrared-microwave satellite data for basin-scale hydrologic modelling. Hydrological Processes, 24, 2068–2086, https://doi.org/10.1002/hyp.7626.

    Google Scholar 

  • Kazumori, M., 2018: Assimilation of Himawari-8 clear sky radiance data in JMA’s global and mesoscale NWP systems. J. Meteor. Soc. Japan, 96B, 173–192, https://doi.org/10.2151/jmsj.2018-037.

    Article  Google Scholar 

  • Lee, J.-R., J. Li, Z. L. Li, P. Wang, and J. L. Li, 2018: ABI water vapor radiance assimilation in a regional NWP model by accounting for the surface impact. Earth and Space Science, 6, 1652–1666, https://doi.org/10.1029/2019EA000711.

    Article  Google Scholar 

  • Li, J., J. L. Li, J. Otkin, T. J. Schmit, and C.-Y. Liu, 2011: Warning information in a preconvection environment from the geostationary advanced infrared sounding system - A simulation study using the IHOP case. J. Appl. Meteor. Climatol., 50, 776–783, https://doi.org/10.1175/2010JAMC2441.1.

    Article  Google Scholar 

  • Li, J., C.-Y. Liu, P. Zhang, and T. J. Schmit, 2012: Applications of full spatial resolution space-based advanced infrared soundings in the preconvection environment. Wea. Forecasting, 27, 515–524, https://doi.org/10.1175/WAF-D-10-05057.1.

    Article  Google Scholar 

  • Li, J., P. Wang, H. J. Han, J. L. Li, and J. Zheng, 2016: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. Journal of Meteorological Research, 30, 169–182, https://doi.org/10.1007/s13351-016-5114-2.

    Article  Google Scholar 

  • Li, J., Z. L. Li, P. Wang, T. J. Schmit, W. G. Bai, and R. Atlas, 2017: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy — sky conditions. J. Geophys. Res., 122, 7600–7613, https://doi.org/10.1002/2016JD026273.

    Article  Google Scholar 

  • Li, J. L., J. Li, C. Velden, P. Wang, T. J. Schmit, and J. Sippel, 2020: Impact of rapid-scan-based dynamical information from GOES-16 on HWRF hurricane forecasts. J. Geophys. Res., 125, e2019JD031647, https://doi.org/10.1029/2019JD031647.

    Google Scholar 

  • Li, Z. L., and Coauthors, 2018: Value-added impact of geostationary hyperspectral infrared sounders on local severe storm forecasts — via a quick regional OSSE. Advances in Atmospheric Sciences, 35, 1217–1230, https://doi.org/10.1007/s00376-018-8036-3.

    Article  Google Scholar 

  • Lin, H. D., S. S. Weygandt, A. H. N. Lim, M. Hu, J. M. Brown, and S. G. Benjamin, 2017: Radiance preprocessing for assimilation in the hourly updating rapid refresh mesoscale model: A study using AIRS data. Wea. Forecasting, 32, 1781–1800, https://doi.org/10.1175/WAF-D-17-0028.1.

    Article  Google Scholar 

  • Lopez, P., and P. Bauer, 2007: “1D+4DVAR” assimilation of NCEP stage-IV radar and gauge hourly precipitation data at ECMWF. Mon. Wea. Rev., 135, 2506–2524, https://doi.org/10.1175/MWR3409.1.

    Article  Google Scholar 

  • Ma, Z., Z. Li, J. Li, T. J. Schmit, L. Cucurull, R. Atlas, and B. Sun, 2020: Enhance low level temperature and moisture profiles through combining NUCAPS, ABI and surface data. Submitted to Earth and Space Sciences.

  • Ma, Z. Z., E. S. Maddy, B. L. Zhang, T. Zhu, and S. A. Boukabara, 2017: Impact assessment of Himawari-8, AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Oceanic Technol., 34, 797–815, https://doi.org/10.1175/JTECH-D-16-0136.1.

    Article  Google Scholar 

  • Menzel, W. P., T. J. Schmit, P. Zhang, and J. Li, 2018: Satellite-based atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 2018, 99, 583–603, https://doi.org/10.1175/BAMS-D-16-0293.1.

    Google Scholar 

  • Okamoto, K., and Coauthors, 2020: Assessment of the potential impact of a hyperspectral infrared sounder on the Himawari follow-on geostationary satellite. SOLA, 16, 162–168, https://doi.org/10.2151/sola.2020-028.

    Article  Google Scholar 

  • Pangaud, T., N. Fourrie, V. Guidard, M. Dahoui, and F. Rabier, 2009: Assimilation of AIRS radiances affected by mid- to low-level clouds. Mon. Wea. Rev., 137, 4276–4292, https://doi.org/10.1175/2009MWR3020.1.

    Article  Google Scholar 

  • Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737–749, https://doi.org/10.1002/qj.243.

    Article  Google Scholar 

  • Reen, B. P., and R. E. Dumais, 2018: Assimilation of aircraft observations in high-resolution mesoscale modeling. Advances in Meteorology, 2018, 8912943, https://doi.org/10.1155/2018/8912943.

    Article  Google Scholar 

  • Schmit, T. J., and Coauthors, 2019: Legacy atmospheric profiles and derived products from GOES-16: Validation and applications. Earth and Space Science, 6, 1730–1748, https://doi.org/10.1029/2019EA000729.

    Article  Google Scholar 

  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096, https://doi.org/10.1175/BAMS-86-8-1079.

    Article  Google Scholar 

  • Schmit, T. T., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: High-spectral-and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 2273–2292, https://doi.org/10.1175/2009JTECHA1248.1.

    Article  Google Scholar 

  • Seo, D. J., and J. P. Breidenbach, 2002: Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeorology, 3, 93–111, https://doi.org/10.1175/1525-7541(2002)003<0093:RTCOSN>2.0.CO;2.

    Article  Google Scholar 

  • Shao, H., and Coauthors, 2016: Bridging research to operations transitions: Status and plans of community GSI. Bull. Amer. Meteor. Soc., 97, 1427–1440, https://doi.org/10.1175/BAMS-D-13-00245.1.

    Article  Google Scholar 

  • Stettner, D., C. Velden, R. Rabin, S. Wanzong, J. Daniels, and W. Bresky, 2019: Development of enhanced vortex-scale atmospheric motion vectors for hurricane applications. Remote Sensing, 11, 1981, https://doi.org/10.3390/rs11171981.

    Article  Google Scholar 

  • Stith, J. L., and Coauthors, 2018: 100 years of progress in atmospheric observing systems. Meteor. Monogr., 59, 2.1–2.55, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0006.1.

    Article  Google Scholar 

  • Taylor, J. K., H. E. Revercomb, and D. C. Tobin, 2018: An analysis and correction of polarization induced calibration errors for the cross-track infrared sounder (CrIS) sensor. Proc. Light, Energy and the Environment 2018, Washington, DC, Optical Society of America.

  • Wang, P., J. Li, J. L. Li, Z. L. Li, T. J. Schmit, and W. G. Bai, 2014: Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP. Geophys. Res. Lett., 41, 1773–1780, https://doi.org/10.1002/2013GL059067.

    Article  Google Scholar 

  • Wang, P., J. Li, Z. L. Li, A. H. N. Lim, J. L. Li, T. J. Schmit, and M. D. Goldberg, 2017: The impact of cross — track infrared sounder (CrIS) cloud — cleared radiances on hurricane Joaquin (2015) and Matthew (2016) forecasts. J. Geophys. Res., 122, 13 201–13 218, https://doi.org/10.1002/2017JD027515.

    Article  Google Scholar 

  • Wang, P., J. Li, Z. Li, A. H. N. Lim, J. Li, and M. D. Goldberg, 2019: Impacts of observation errors on hurricane forecasts when assimilating hyperspectral infrared sounder radiances in partially cloudy skies. J. Geophys. Res., 124, 10 802–10 813. https://doi.org/10.1029/2019JD031029

    Article  Google Scholar 

  • Wang, P., J. Li, and T. J. Schmit, 2020: The impact of low latency satellite sounder observations on local severe storm forecasts in regional NWP. Sensors, 20(3), 650. https://doi.org/10.3390/s20030650

    Article  Google Scholar 

  • Xue, Y. H., J. Li, Z. L. Li, R. Y. Lu, M. M. Gunshor, S. L. Moeller, D. Di, and T. J. Schmit, 2020a: Assessment of upper tropospheric water vapor monthly variation in reanalyses with near-global homogenized 6.5-µm radiances from geostationary satellites. J. Geophys. Res., 125, e2020JD032695, https://doi.org/10.1029/2020JD032695.

    Article  Google Scholar 

  • Xue, Y. H., J. Li, Z. L. Li, M. M. Gunshor, and T. J. Schmit, 2020b: Evaluation of the diurnal variation of upper tropospheric humidity in reanalysis using homogenized observed radiances from international geostationary weather satellites. Remote Sensing, 12, 1628, https://doi.org/10.3390/rs12101628.

    Article  Google Scholar 

  • Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1.

    Article  Google Scholar 

  • Yin, R. Y., W. Han, Z. Q. Gao, and D. Di, 2020: The evaluation of FY4A’s geostationary interferometric infrared sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Qourt. J. Roy. Meteor. Soc., 146, 1459–1476, https://doi.org/10.1002/qj.3746.

    Article  Google Scholar 

  • Zheng, J., J. Li, T. J. Schmit, J. L. Li, and Z. Q. Liu, 2015: The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011). Advances in Atmospheric Sciences, 32, 319–335, https://doi.org/10.1007/s00376-014-3162-z.

    Article  Google Scholar 

  • Zhou, L. H., M. Divakarla, X. P. Liu, A. Layns, and M. Goldberg, 2019: An overview of the science performances and calibration/validation of joint polar satellite system operational products. Remote Sensing, 11, 698, https://doi.org/10.3390/rs11060698.

    Article  Google Scholar 

  • Zhu, Y. Q., J. Derber, A. Collard, D. Dee, R. Treadon, G. Gayno, and J. A. Jung, 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Grid-point Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 240, 1479–1492, https://doi.org/10.1002/qj.2233.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NOAA GeoXO program (NA15NES4320001). The view, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration’s or U.S. government’s position, policy, or decision. Thanks to the JCSDA (Joint Center for Satellite Data Assimilation) for providing the “S4” supercomputer (Supercomputer for Satellite Simulations and Data Assimilation) physically located at SSEC at the University of Wisconsin-Madison as the main computational resource for this research study.

Author information

Authors and Affiliations

  1. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI, 53706, USA

    Pei Wang, Zhenglong Li & Jun Li

  2. Advanced Satellite Product Branch, Center for Satellite Applications and Research, NESDIS/NOAA, Madison, WI, 53706, USA

    Timothy J. Schmit

Authors
  1. Pei Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Zhenglong Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Jun Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Timothy J. Schmit
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Jun Li.

Additional information

Article Highlights

• The added-value from a GEO-hyperspectral IR sounder is studied by using a hybrid OSSE method.

• The hybrid OSSE system can be used to evaluate the simulated GEO CrIS-FSR data by verifying the simulated LEO CrIS-FSR compared to the real CrIS-FSR.

• The assimilation of GEO-hyperspectral IR data improves atmospheric temperature, moisture, wind, and precipitation forecasts.

• An overall 5% RMSE reduction was found from using a GEO hyperspectral IR sounder on the atmospheric variables.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Li, Z., Li, J. et al. Added-value of GEO-hyperspectral Infrared Radiances for Local Severe Storm Forecasts Using the Hybrid OSSE Method. Adv. Atmos. Sci. 38, 1315–1333 (2021). https://doi.org/10.1007/s00376-021-0443-1

Download citation

  • Received: 26 December 2020

  • Revised: 10 March 2021

  • Accepted: 09 April 2021

  • Published: 01 June 2021

  • Issue Date: August 2021

  • DOI: https://doi.org/10.1007/s00376-021-0443-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • GEO hyperspectral IR
  • hybrid OSSE
  • satellite data assimilation

关键词

  • 静止卫星
  • 高光谱红外探测仪
  • 混合OSSE试验
  • 数据同化
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

Fengyun Meteorological Satellites: Data, Application and Assessment

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature