Skip to main content

Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models

Abstract

Total column ozone (TCO) over the Tibetan Plateau (TP) is lower than that over other regions at the same latitude, particularly in summer. This feature is known as the “TP ozone valley”. This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6 (CMIP6). The TP ozone valley consists of two low centers, one is located in the upper troposphere and lower stratosphere (UTLS), and the other is in the middle and upper stratosphere. Overall, the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley, with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2 (MSR2) TCO observations greater than 0.8 for all CMIP6 models. Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes. This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley. Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder (MLS) observations. However, the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley. Most CMIP6 models predict the TP ozone valley in summer will deepen in the future.

This is a preview of subscription content, access via your institution.

References

  1. Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019: E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4497.

    Google Scholar 

  2. Bian, J. C., 2009: Features of ozone mini-hole events over the Tibetan Plateau. Adv. Atmos. Sci., 26, 305–311, https://doi.org/10.1007/s00376-009-0305-8.

    Article  Google Scholar 

  3. Bian, J. C., G. C. Wang, H. B. Chen, D. L. Qi, D. R. Lu, and X. J. Zhou, 2006: Ozone mini-hole occurring over the Tibetan Plateau in December 2003. Chinese Science Bulletin, 51, 885–888, https://doi.org/10.1007/s11434-006-0885-y

    Google Scholar 

  4. Bian, J. C., R. C. Yan, H. B. Chen, D. R. Lu, and S. T. Massie, 2011: Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Adv. Atmos. Sci., 28, 1318–1325, https://doi.org/10.1007/s00376-011-0174-9.

    Article  Google Scholar 

  5. Bian, J. C., Q. J. Fan, and R. C. Yan, 2013: Summertime stratosphere-troposphere exchange over the Tibetan plateau and its climatic impact. Advances in Meteorological Science and Technology, 3, 22–28, https://doi.org/10.3969/j.issn.2095-1973.2013.02.002. (in Chinese with English abstract)

    Google Scholar 

  6. Bian, J. C., D. Li, Z. X. Bai, Q. Li, D. R. Lyu, and X. J. Zhou, 2020: Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon. National Science Review, 7, 516–533, https://doi.org/10.1093/nsr/nwaa005.

    Article  Google Scholar 

  7. Boucher, O., and Coauthors, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5195.

    Google Scholar 

  8. Boucher, O., and Coauthors, 2019: IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp126. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.5262.

    Google Scholar 

  9. Brasseur, G., and M. H. Hitchman, 1988: Stratospheric response to trace gas perturbations: Changes in ozone and temperature distributions. Science, 240, 634–637, https://doi.org/10.1126/science.240.4852.634.

    Article  Google Scholar 

  10. Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799–802, https://doi.org/10.1038/35071047.

    Article  Google Scholar 

  11. Chen, S. B., L. Zhao, and Y. L. Tao, 2017: Stratospheric ozone change over the Tibetan Plateau. Atmospheric Pollution Research, 8, 528–534, https://doi.org/10.1016/j.apr.2016.11.007.

    Article  Google Scholar 

  12. Cong, C. H., W. L. Li, and X. J. Zhou, 2002: Mass exchange between stratosphere and trotosphere over the Tibetan Plateau and its surroundings. Chinese Science Bulletin, 47, 508–512, https://doi.org/10.1360/02tb9117.

    Article  Google Scholar 

  13. Danabasoglu, G., 2019a: NCAR CESM2 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6. 7627.

    Google Scholar 

  14. Danabasoglu, G., 2019b: NCAR CESM2 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2201.

    Google Scholar 

  15. Danabasoglu, G., 2019c: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.10071.

    Google Scholar 

  16. Danabasoglu, G., 2019d: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.10026.

    Google Scholar 

  17. Danilin, M. Y., N.-D. Sze, M. K. W. Ko, J. M. Rodriguez, and A. Tabazadeh, 1998: Stratospheric cooling and Arctic ozone recovery. Geophys. Res. Lett., 25, 2141–2144, https://doi.org/10.1029/98GL01587.

    Article  Google Scholar 

  18. Davis, S. M., and Coauthors, 2016: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: A long-term database for climate studies. Earth System Science Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016.

    Article  Google Scholar 

  19. de F. Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10841–10855, https://doi.org/10.1029/96JD03510.

    Article  Google Scholar 

  20. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2015: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

    Article  Google Scholar 

  21. Fan, W. X., W. G. Wang, and J. C. Bian, 2008: The distribution of cross-tropopause mass flux over the Tibetan Plateau and its surrounding regions. Chinese Journal of Atmospheric Sciences, 32, 1309–1318, https://doi.org/10.3878/j.issn.1006-9895.2008.06.06. (in Chinese with English abstract)

    Google Scholar 

  22. Fioletov, V. E., and T. G. Shepherd, 2003: Seasonal persistence of midlatitude total ozone anomalies. Geophys. Res. Lett., 30, 1417, https://doi.org/10.1029/2002GL016739.

    Article  Google Scholar 

  23. Good, P., A. Sellar, Y. M. Tang, S. Rumbold, R. Ellis, D. Kelley, T. Kuhlbrodt, and J. Walton, 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1567.

    Google Scholar 

  24. Guo, D., P. X. Wang, X. J. Zhou, Y. Liu, and W. L. Li, 2012: Dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau. Acta Meteorologica Sinica, 26, 216–228, https://doi.org/10.1007/s13351-012-0207-2.

    Article  Google Scholar 

  25. Guo, D., Y. C. Su, C. H. Shi, J. J. Xu, and A. M. Jr. Powell, 2015: Double core of ozone valley over the Tibetan Plateau and its possible mechanisms. Journal of Atmospheric and Solar-Terrestrial Physics, 130-131, 127–131, https://doi.org/10.1016/j.jastp.2015.05.018.

    Article  Google Scholar 

  26. Guo, H., and Coauthors, 2018a: NOAA-GFDL GFDL-CM4 model output historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8594.

    Google Scholar 

  27. Guo, H., and Coauthors, 2018b: NOAA-GFDL GFDL-CM4 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.9242.

    Google Scholar 

  28. He, C., and W. Zhou, 2020: Different enhancement of the east Asian summer monsoon under global warming and interglacial epochs simulated by CMIP6 models: Role of the subtropical high. J. Climate, 33, 9721–9733, https://doi.org/10.1175/JCLI-D-20-0304.1.

    Article  Google Scholar 

  29. Huang, X., and Coauthors, 2020: South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Science Advances, 6, eaay6546, https://doi.org/10.1126/sciadv.aay6546.

    Article  Google Scholar 

  30. John, J. G., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1414.

    Google Scholar 

  31. Keeble, J., E. M. Bednarz, A. Banerjee, N. L. Abraham, N. R. P. Harris, A. C. Maycock, and J. A. Pyle, 2017: Diagnosing the radiative and chemical contributions to future changes in tropical column ozone with the UM-UKCA chemistry.climate model. Atmospheric Chemistry and Physics, 17, 13801–13818, https://doi.org/10.5194/acp-17-13801-2017.

    Article  Google Scholar 

  32. Keeble, J., and Coauthors, 2020: Evaluating stratospheric ozone and water vapor changes in CMIP6 models from 1850–2100. Atmospheric Chemistry and Physics-Discussions, 1–68, https://doi.org/10.5194/acp-2019-1202.

    Google Scholar 

  33. Kiss, P., R. Muller, and I. M. Janosi, 2007: Long-range correlations of extrapolar total ozone are determined by the global atmospheric circulation. Nonlinear Processes in Geophysics, 14, 435–442, https://doi.org/10.5194/npg-14-435-2007.

    Article  Google Scholar 

  34. Krasting, J. P., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.8597.

    Google Scholar 

  35. Li, L. J., 2019: CAS FGOALS-g3 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.3356.

    Google Scholar 

  36. Li, Y. J., M. P. Chipperfield, W. H. Feng, S. S. Dhomse, R. J. Pope, F. Q. Li, and D. Guo, 2020: Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979.2017. Atmospheric Chemistry and Physics, 20, 8627–8639, https://doi.org/10.5194/acp-20-8627-2020.

    Article  Google Scholar 

  37. Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, J. C. Bian, X. Liu, and K. Chance, 2010: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987.2001. J. Geophys. Res., 115, D18311, https://doi.org/10.1029/2009JD013130.

    Article  Google Scholar 

  38. Liu, Y., W. L. Li, X. J. Zhou, and J. H. He, 2003: Mechanism of formation of the ozone valley over the Tibetan Plateau in summer. Transport and chemical process of ozone. Adv. Atmos. Sci., 20, 103–109, https://doi.org/10.1007/BF03342054.

    Article  Google Scholar 

  39. Livesey, N. J., and Coauthors, 2016: EOS MLS Version 4.2x Level 2 data quality and description document. Rev., B, Jet Propulsion Laboratory, D–33509.

    Google Scholar 

  40. Nowack, P. J., N. L. Abraham, A. C. Maycock, P. Braesicke, J. M. Gregory, M. M. Joshi, A. Osprey, and J. A. Pyle, 2015: A large ozone-circulation feedback and its implications for global warming assessments. Nature Climate Change, 5, 41–45, https://doi.org/10.1038/nclimate2451.

    Article  Google Scholar 

  41. O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.

    Article  Google Scholar 

  42. Park, S., and J. Shin, 2019: SNU SAM0-UNICON model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.7789.

    Google Scholar 

  43. Pitari, G., S. Palermi, G. Visconti, and R. G. Prinn, 1992: Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J. Geophys. Res., 97, 5953–5962, https://doi.org/10.1029/92JD00164.

    Article  Google Scholar 

  44. Ramaswamy, V., M. D. Schwarzkopf, and W. J. Randel, 1996: Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature, 382, 616–618, https://doi.org/10.1038/382616a0.

    Article  Google Scholar 

  45. Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99, 5433–5447, https://doi.org/10.1029/93JD03454.

    Article  Google Scholar 

  46. Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 Climate. J. Atmos. Sci., 47, 475–494, https://doi.org/10.1175/1520-0469(1990)047<0475:CCATMA>2.0.CO;2.

    Article  Google Scholar 

  47. Seferian, R., 2018: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4068.

    Google Scholar 

  48. Seferian, R., 2019: CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1395.

    Google Scholar 

  49. Sexton, D. M. H., 2001: The effect of stratospheric ozone depletion on the phase of the Antarctic Oscillation. Geophys. Res. Lett., 28, 3697–3700, https://doi.org/10.1029/2001GL013376.

    Article  Google Scholar 

  50. Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergan, 1999: Solar cycle variability, ozone, and climate. Science, 284, 305–308, https://doi.org/10.1126/science.284.5412.305.

    Article  Google Scholar 

  51. Tang, Y. M., S. Rumbold, R. Ellis, D. Kelley, J. Mulcahy, A. Sellar, J. Walton, and C. Jones, 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6113.

    Google Scholar 

  52. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719.

    Article  Google Scholar 

  53. Tian, W. S., and M. P. Chipperfield, 2005: A new coupled chemistry—climate model for the stratosphere: The importance of coupling for future O3-climate predictions. Quart. J. Roy. Meteor. Soc., 131, 281–303, https://doi.org/10.1256/qj.04.05.

    Article  Google Scholar 

  54. Tian, W. S., M. P. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus B: Chemical and Physical Meteorology, 60, 622–635, https://doi.org/10.1111/j.1600-0889.2008.00338.x.

    Article  Google Scholar 

  55. Tu, H. W., H. Y. Tian, C. H. Wei, W. L. Wang, R. H. Zhang, and J. L. Luo, 2018: Impact of the east.west phase of South Asia High on water vapor distribution near tropopause over the Asian monsoon region. Climatic and Environmental Research, 23, 341–354, https://doi.org/10.3878/j.issn.1006-9585.2017.17048. (in Chinese with English abstract)

    Google Scholar 

  56. van der A, R. J., M. A. F. Allaart, and H. J. Eskes, 2010: Multi sensor reanalysis of total ozone. Atmospheric Chemistry and Physics, 10, 11277–11294, https://doi.org/10.5194/acp-10-11277-2010.

    Article  Google Scholar 

  57. Voldoire, A., 2018: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4066.

    Google Scholar 

  58. Voldoire, A., 2019: CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1384.

    Google Scholar 

  59. World Meteorological Organization (WMO), 2018: Executive summary: Scientific assessment of ozone depletion. Rep. No. 58, 2018 World Meteorological Organization, Global Ozone Research and Monitoring Project, Geneva, Switzerland, 67 pp.

    Google Scholar 

  60. Wu, T. W., and Coauthors, 2020: BCC BCC-CSM2MR model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2948.

    Google Scholar 

  61. Xie, F., and Coauthors, 2016: A connection from Arctic stratospheric ozone to El Nino-Southern oscillation. Environmental Research Letters, 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.

    Article  Google Scholar 

  62. Xin, X. G., and Coauthors, 2019: BCC BCC-CSM2MR model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1732.

    Google Scholar 

  63. Yan, R. C., and J. C. Bian, 2015: Tracing the boundary layer sources of carbon monoxide in the Asian summer monsoon anticyclone using WRF-Chem. Adv. Atmos. Sci., 32, 943–951, https://doi.org/10.1007/s00376-014-4130-3.

    Article  Google Scholar 

  64. Ye, Z. J., and Y. F. Xu, 2003: Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res., 108, 4654, https://doi.org/10.1029/2002JD003139.

    Article  Google Scholar 

  65. Yukimoto, S., and Coauthors, 2019a: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6842.

    Google Scholar 

  66. Yukimoto, S., and Coauthors, 2019b: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.638.

    Google Scholar 

  67. Zhang, J., and Coauthors, 2018a: BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical. Version 20201101, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2949.

    Google Scholar 

  68. Zhang, J. K., W. S. Tian, F. Xie, H. Y. Tian, J. L. Luo, J. Zhang, W. Liu, and S. Dhomse, 2014: Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring. Tellus B: Chemical and Physical Meteorology, 66, 23415, https://doi.org/10.3402/tellusb.v66.23415.

    Article  Google Scholar 

  69. Zhang, J. K., and Coauthors, 2018b: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nature Communications, 9, 206, https://doi.org/10.1038/s41467-017-02565-2.

    Article  Google Scholar 

  70. Zhou, L. B., H. Zou, S. P. Ma, and P. Li, 2013: The Tibetan ozone low and its long-term variation during 1979.2010. Acta Meteorologica Sinica, 27, 75–86, https://doi.org/10.1007/s13351-013-0108-9.

    Article  Google Scholar 

  71. Zhou, S. W., and R. H. Zhang, 2005: Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett., 32, L18705, https://doi.org/10.1029/2005GL023496.

    Google Scholar 

  72. Zhou, X. J., and C. Luo, 1994: Ozone valley over Tibetan Plateau. Journal of Meteorological Research, 8, 505–506.

    Google Scholar 

  73. Zhou, X. J., W. L. Li, L. X. Chen, and Y. Liu, 2004: Study of ozone change over Tibetan Plateau. Acta Meteorologica Sinica, 62, 513–527, https://doi.org/10.3321/j.issn:0577-6619.2004.05.001. (in Chinese with English abst

    Google Scholar 

Download references

Acknowledgements

This research was supported by the second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0604) and the National Natural Science Foundation of China (Grant Nos. 42075062 and 91837311). This research is also supported by the Fundamental Research Funds for the Central Universities (lzujbky-2021-ey04). JK thanks NERC for financial support through NCAS. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies that support CMIP6 and ESGF. We thank the scientific teams for the MLS, MSR2 and SWOOSH data. The MSR2 TCO data are available from http://www.knmi.nl/kennis-en-datacentrum/publicatie/multi-sensor-reanalysis-of-total-ozone. The SWOOSH data can be downloaded from https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00958. The MLS data can be downloaded from https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2/. The CMIP6 models can be downloaded from https://esgf-node.llnl.gov/search/cmip6/.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiankai Zhang.

Additional information

Article Highlights

• Most CMIP6 models can capture the seasonal cycles and spatial characteristics of the TP ozone valley.

• Chemical-radiative-dynamical processes play an important role in the simulation of the TP ozone valley.

• The multi-model mean of CMIP6 simulations predicts that the TP ozone valley in summer will deepen in the future.

This paper is a contribution to the special issue on Third Pole Atmospheric Physics, Chemistry, and Hydrology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Duan, J., Zhao, S. et al. Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. Adv. Atmos. Sci. (2021). https://doi.org/10.1007/s00376-021-0442-2

Download citation

Key words

  • Tibetan Plateau
  • stratospheric ozone
  • ozone valley
  • CMIP6