Skip to main content

Advertisement

SpringerLink
  • Advances in Atmospheric Sciences
  • Journal Aims and Scope
  • Submit to this journal
Cause of Extreme Heavy and Persistent Rainfall over Yangtze River in Summer 2020
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The Combined Effects of the Tropical and Extratropical Quasi-biweekly Oscillations on the Record-setting Mei-yu Rainfall in the Summer of 2020

04 January 2023

Zhen Huang, Shuanglin Li, … Chao Zhang

Extreme precipitation driven by the rapid tropical Atlantic warming and the second developing La Niña over the Yangtze–Huaihe River Basin in August 2021

16 February 2023

Junhu Zhao, Jinqing Zuo, … Guolin Feng

Why Does Extreme Rainfall Occur in Central China during the Summer of 2020 after a Weak El Niño?

07 June 2021

Congxi Fang, Yu Liu, … Huiming Song

Anomalous circulation patterns associated with 2011 heavy rainfall over northern Tanzania

12 July 2021

Laban Lameck Kebacho

Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze-Huaihe River Valley during 1981–2020

10 November 2021

Huijie Wang, Jianhua Sun, … Yuanchun Zhang

Causes of extreme 2020 Meiyu-Baiu rainfall: a study of combined effect of Indian Ocean and Arctic

14 June 2022

Xiaodan Chen, Zhiping Wen, … Yuanyuan Guo

Oceanic and atmospheric anomalies associated with extreme precipitation events in China 1983–2020

10 March 2023

Y. C. Lee, M. O. Wenig & K. L. Chan

The Record-breaking Mei-yu in 2020 and Associated Atmospheric Circulation and Tropical SST Anomalies

06 April 2021

Yihui Ding, Yunyun Liu & Zeng-Zhen Hu

The Seasonal Prediction of the Exceptional Yangtze River Rainfall in Summer 2020

28 June 2021

Chaofan Li, Riyu Lu, … Fei Zheng

Download PDF

Associated Content

Part of a collection:

Summer 2020: Record Rainfall in Asia — Mechanisms, Predictability and Impacts

  • Original Paper
  • Open Access
  • Published: 30 June 2021

Cause of Extreme Heavy and Persistent Rainfall over Yangtze River in Summer 2020

  • Xiao Pan1,
  • Tim Li2,1,
  • Ying Sun3 &
  • …
  • Zhiwei Zhu1,4 

Advances in Atmospheric Sciences volume 38, pages 1994–2009 (2021)Cite this article

  • 593 Accesses

  • 27 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley (YRV) in June-July (JJ) 2020. An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific (WNPAC) and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia. A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Niña-like SST anomaly (SSTA) forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean (IO). Different from conventional central Pacific (CP) El Niños that decay slowly, a CP El Niño in early 2020 decayed quickly and became a La Niña by early summer. This quick transition had a critical impact on the WNPAC. Meanwhile, an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Niño was superposed by an interdecadal/long-term trend component. Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC. The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes, driven by combined heating anomalies over India, the tropical eastern Pacific, and the tropical Atlantic.

摘要

2020年6-7月, 长江流域出现了创纪录的持续性特大暴雨. 观测资料表明, 与西北太平洋异常反气旋 (WNPAC) 相关的南风异常和与东北亚异常高压相联系的东北风异常交汇, 从而导致该持续性暴雨的发生. 进一步的观测和模式研究表明, 超强的 WNPAC 由赤道太平洋的 La Niña 型海温异常和热带印度洋的暖海温异常共同强迫产生. 与传统的中太平洋型 (CP) El Niño 的缓慢衰减不同, 2020 年初 CP El Niño 快速衰减, 到初夏演变为 La Niña. ENSO 的快速位相转换对 WNPAC 的形成发挥着关键的作用. 同时, 与 CP El Niño 相关的印度洋年际尺度海温异常叠加了年代际分量, 导致热带印度洋海温出现极端增暖. 数值试验表明, 热带印度洋和太平洋的热源对 WNPAC 的形成和维持均有贡献. 持续的东北亚高压异常则是中纬度静止 Rossby 波列的一部分, 由印度、 热带东太平洋和热带大西洋的热源共同强迫产生.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  • Alessandri, A., S. Gualdi, J. Polcher, and A. Navarra, 2007: Effects of land surface-vegetation on the boreal summer surface climate of a GCM. J. Clim., 20(2), 255–278, https://doi.org/10.1175/JCLI3983.1.

    Article  Google Scholar 

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global ocean. J. Clim., 15(16), 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TAB-TIO>2.0.CO;2.

    Article  Google Scholar 

  • Chang, C. P., Y. S. Zhang, and T. Li, 2000a: Interannual and inter-decadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Clim., 13, 4310–4325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    Article  Google Scholar 

  • Chang, C. P., Y. S. Zhang, and T. Li, 2000b: Interannual and Inter-decadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part II: Meridional Structure of the Monsoon. J. Clim., 13, 4326–4340, https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

    Article  Google Scholar 

  • Chen, G., and R. Huang, 2012: Excitation mechanisms of the tele-connection patterns affecting the July precipitation in northwest China. J. Clim., 25, 7834–7851, https://doi.org/10.1175/JCLI-D-11-00684.1.

    Article  Google Scholar 

  • Chen, G., R. Huang, and L. Zhou, 2013: Baroclinic instability of the Silk Road pattern induced by thermal damping. J. Atmos. Sci., 70, 2875–2893, https://doi.org/10.1175/JAS-D-12-0326.1.

    Article  Google Scholar 

  • Chen, X. L., and T. J. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res. Atmos., 119(13), 043–13, 066.

    Google Scholar 

  • Chen, Y., and P. M. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Clim. Dyn., 47, 989–1006, https://doi.org/10.1007/s00382-015-2885-6.

    Article  Google Scholar 

  • Chen, Z. S., Z. P. Wen, R. G. Wu, X. B. Lin, and J. B. Wang, 2016: Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Clim. Dyn., 46, 1027–1041, https://doi.org/10.1007/s00382-015-2630-1.

    Article  Google Scholar 

  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim., 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.

    Article  Google Scholar 

  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim., 18(17), 3483–3505, https://doi.org/10.1175/JCLI3473.1.

    Article  Google Scholar 

  • Ding, Q. H., J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Clim., 24, 1878–1896, https://doi.org/10.1175/2011JCLI3621.1.

    Article  Google Scholar 

  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Jpn., 82, 1019–1034, https://doi.org/10.2151/jmsj.2004.1019.

    Article  Google Scholar 

  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178, https://doi.org/10.1256/qj.01.211.

    Article  Google Scholar 

  • Fan, H., B. Huang, S. Yang, and W. Dong, 2020: Influence of Pacific Meridional Mode on ENSO evolution and predictability: Asymmetric modulation and ocean preconditioning. J. Clim., 34(5), 1881–1901.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc, 106, 447–462, https://doi.org/10.1002/qj.49710644905.

    Article  Google Scholar 

  • Han, T. T., S. P. He, X. Hao, and H. J. Wang, 2018: Recent inter-decadal shift in the relationship between Northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Clim. Dyn., 50(3–4), 1413–1424, https://doi.org/10.1007/s00382-017-3694-x.

    Google Scholar 

  • He, S. P., Y. Q. Gao, F. Li, H. J. Wang, and Y. C. He, 2017: Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev., 164, 48–62, https://doi.org/10.1016/j.earscirev.2016.10.014.

    Article  Google Scholar 

  • Hersbach, H., B. Bell, P. Berrisford, A. Horányi, J. M. Sabater, J. Nicolas, R. Radu, D. Schepers, A. Simmons, C. Soci, and D. Dee, 2019: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159, 17–24.

    Google Scholar 

  • Hong, X. W., R. Y. Lu, and S. L. Li, 2018: Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers. J. Clim., 31, 9283–9292, https://doi.org/10.1175/JCLI-D-18-0283.1.

    Article  Google Scholar 

  • Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, and H. M. Zhang, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and inter-scomparisons. J. Clim., 30(20), 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Article  Google Scholar 

  • Huang, R. H., and W. J. Li, 1988: Influence and physical mechanism of heat source anomaly over the tropical western Pacific on the subtropical high over East Asia (in Chinese). Chin. J. Atmos. Sci., 12, 107–116.

    Google Scholar 

  • Hsu P. C., T. Li, L. You, J. Gao, and H. L. Ren, 2015: A spatial-temporal projection method for 10–30-day forecast of heavy rainfall in Southern China. Clim. Dyn., 44, 1227–1244, https://doi.org/10.1007/s00382-014-2215-4.

    Article  Google Scholar 

  • Jiang, L., and T. Li, 2019: Relative roles of El Niño-induced extratropical and tropical forcing in generating Tropical North Atlantic (TNA) SST anomaly. Clim. Dyn., 53(7–8), 3791–3804, https://doi.org/10.1007/s00382-019-04748-7.

    Article  Google Scholar 

  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Clim. Dyn., 47, 3737–3765, https://doi.org/10.1007/s00382-016-3039-1.

    Article  Google Scholar 

  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Q. J. R. Meteorol. Soc., 132, 2009–2030, https://doi.org/10.1256/qj.05.204.

    Article  Google Scholar 

  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Jpn., 87, 561–580, https://doi.org/10.2151/jmsj.87.561.

    Article  Google Scholar 

  • Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: synoptic-to-interannual variabilities. Terr. Atmos. Ocean Sci., 16, 285–314, https://doi.org/10.3319/TAO.2005.16.2.285(A).

    Article  Google Scholar 

  • Li, T., B. Wang, B. Wu, T. J. Zhou, C. P. Chang, and R. H. Zhang, 2017: Theories on formation of an anomalous anticyclone in Western North Pacific during El Niño: a review. J. Meteorol. Res., 31(6), 987–1006, https://doi.org/10.1007/s13351-017-7147-6.

    Article  Google Scholar 

  • Lin, J. S., B. Wu, and T. J. Zhou, 2016: Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multi-decadal Oscillation? Atmos. Oceanic Sci. Lett., 9(6), 451–457, https://doi.org/10.1080/16742834.2016.1233800.

    Article  Google Scholar 

  • Liu, Y. Y., and Y. H. Ding, 2008: Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley. Sci. China Ser. D-Earth Sci., 51, 1021–1035, https://doi.org/10.1007/s11430-008-0073-9.

    Article  Google Scholar 

  • Lu, R. Y., J. H. Oh, and B. J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 44–55.

    Article  Google Scholar 

  • Lu, R., Z. W. Zhu, T. Li, and H. Y. Zhang, 2020: Interannual and interdecadal variabilities of spring rainfall over northeast China and their associated sea surface temperature anomaly forcings. J. Clim., 33(4), 1423–1435, https://doi.org/10.1175/JCLI-D-19-0302.1.

    Article  Google Scholar 

  • Nan, S. L., and J. P. Li., 2005: The relationship between the summer precipitation in the Yangtze River Valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 4–1-4-4.

    Google Scholar 

  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    Article  Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteorol. Soc. Jpn., 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3_373.

    Article  Google Scholar 

  • Piao, J., W. Chen, S. F. Chen, H. N. Gong, and B. Liu, 2020: The intensified impact of El Niño on late-summer precipitation over East Asia since the early 1990s. Clim. Dyn., 54, 4793–4809, https://doi.org/10.1007/s00382-020-05254-x.

    Article  Google Scholar 

  • Roeckner, E., E. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie Report Series 218. Technical Report, Max-Planck-Institut für Meteorologie, 99pp.

  • Sato, N., and M. Takahashi, 2006: Dynamical processes related to the appearance of quasi-stationary waves on the subtropical jet in the midsummer Northern Hemisphere. J. Clim., 19, 1531–1544, https://doi.org/10.1175/JCLI3697.1.

    Article  Google Scholar 

  • Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res. Atmos., 117(D8).

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height fields during the Northern Hemisphere winter. Mon. Weather Rev., 109(4), 784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:TIT-GHF>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., and Q. Zhang, 2002: Pacific-East Asian Teleconnection. Part II: How the Philippine sea anomalous anticyclone is established during El Niño development. J. Clim., 15(22), 3252–3265, https://doi.org/10.1175/1504-0442(2002)015<3252:PEATPI>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722, https://doi.org/10.1073/pnas.1214626110.

    Article  Google Scholar 

  • Wang, B., J. Li, and Q. He, 2017a: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34(10), 1235–1248, https://doi.org/10.1007/s00376-017-7016-3.

    Article  Google Scholar 

  • Wang, B., J. Liu, J. Yang, T. Zhou, and Z. Wu, 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Clim., 22, 3864–3875, https://doi.org/10.1175/2009JCLI2850.1.

    Article  Google Scholar 

  • Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Clim., 16, 1195–1211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian Teleconnection: How does ENSO affect East Asian climate? J. Clim., 13(9), 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., X. Luo, Y. M. Yang, W. Y. Sun, M. A. Cane, W. J. Cai, S. W. Yeh, and J. Liu, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences, 116(45), 22512–22517, https://doi.org/10.1073/pnas.1911130116.

    Article  Google Scholar 

  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017b: Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J. Clim., 30(10), 3743–3769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    Article  Google Scholar 

  • Wang, X., 2018: The influence of SST in subtropical North Pacific on the warm-cold phase transition of ENSO. Climatic Environ. Res. (in Chinese), 23(4), 453–462.

    Google Scholar 

  • Wei, W., R. Zhang, S. Yang, W. Li, and M. Wen, 2019: Quasi-biweekly oscillation of the South Asian High and its role in connecting the Indian and East Asian summer rainfalls. Geophys. Res. Lett., 46(24), 14742–14750, https://doi.org/10.1029/2019GL086180.

    Article  Google Scholar 

  • Wu, B., J. Lin, and T. Zhou, 2016: Interdecadal circumglobal tele-connection pattern during boreal summer. Atmos. Sci. Lett., 17(8), 446–452, https://doi.org/10.1002/asl.677.

    Article  Google Scholar 

  • Wu, B., T. Li, and T. Zhou, 2010: Relative Contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Clim., 23(11), 2974–2986, https://doi.org/10.1175/2010JCLI3300.1.

    Article  Google Scholar 

  • Wu, R., 2002: A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoons. Int. J. Climatol., 22, 1879–1895, https://doi.org/10.1002/joc.845.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    Article  Google Scholar 

  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Clim., 22(3), 730–747, https://doi.org/10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  • Xing, W., B. Wang, and S. Y. Yim, 2016: Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia. Clim. Dyn., 47, 1–13, https://doi.org/10.1007/s00382-014-2385-0. doi: https://doi.org/10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  • Xing, W., B. Wang, S. Y. Yim, and K. J. Ha, 2017: Predictable patterns of the May–June rainfall anomaly over East Asia. J. Geophys. Res. Atmos, 122, 2203–2217, https://doi.org/10.1002/2016JD025856.

    Article  Google Scholar 

  • Xu, Z. Q., K. Fan, and H. J. Wang, 2015: Decadal Variation of Summer Precipitation over China and Associated Atmospheric Circulation after the Late 1990s. J. Clim., 28, 4086–4106, https://doi.org/10.1175/JCLI-D-14-00464.1.

    Article  Google Scholar 

  • Yang, S. Y., and T. Li, 2016: Zonal shift of the South Asian High on the subseasonal time-scale and its relation to the summer rainfall anomaly in China. Q. J. R. Meteorol. Soc., 142, 2324–2335, https://doi.org/10.1002/qj.2826.

    Article  Google Scholar 

  • Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Clim., 23, 2093–2114, https://doi.org/10.1175/2009JCLI3323.1.

    Article  Google Scholar 

  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Clim., 25, 7702–7722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    Article  Google Scholar 

  • Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 1124–1132, https://doi.org/10.1007/s11430-016-9026-x.

    Article  Google Scholar 

  • Zhu, Z. W., 2018: Breakdown of the relationship between Australian summer rainfall and ENSO caused by tropical Indian Ocean SST warming. J. Clim., 31(6), 2321–2336, https://doi.org/10.1175/JCLI-D-17-0132.1.

    Article  Google Scholar 

  • Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia-North America teleconnection. J. Clim., 29(20), 7313–7327, https://doi.org/10.1175/JCLI-D-16-0137.1.

    Article  Google Scholar 

  • Zhu, Z. W., and T. Li, 2017: The record-breaking hot summer in 2015 over Hawaiian Islands and its physical causes. J. Clim., 30(11), 4253–4266, https://doi.org/10.1175/JCLI-D-16-0438.1.

    Article  Google Scholar 

  • Zhu, Z. W., T. Li, and J. H. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Clim., 27(3), 1083–1099, https://doi.org/10.1175/JCLI-D-13-00180.1.

    Article  Google Scholar 

  • Zhu, Z. W., T. Li, P. C. Hsu, and J. H. He, 2015: A spatial-temporal projection model for extended-range forecast in the tropics. Clim. Dyn., 45, 1085–1098, https://doi.org/10.1007/s00382-014-2353-8.

    Article  Google Scholar 

  • Zhu, Z. W., R. Lu, H. Yan, W. Li, T. Li, and J. H. He, 2020: The dynamic origin of the interannual variability of West China Autumn Rainfall. J. Clim., 33(22), 9643–9652, https://doi.org/10.1175/JCLI-D-20-0097.1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by China National Key R&D Program 2018YFA0605604, NSFC Grant No. 42088101, NOAA NA18OAR4310298, and NSF AGS-2006553. This is SOEST contribution number 11354, IPRC contribution number 1524, and ESMC number 350.

Author information

Authors and Affiliations

  1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME) / Joint International Research Laboratory of Climate and Environment Change (ILCEC) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, 210044, China

    Xiao Pan, Tim Li & Zhiwei Zhu

  2. International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA

    Tim Li

  3. National Climate Center, Beijing, 100081, China

    Ying Sun

  4. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Zhiwei Zhu

Authors
  1. Xiao Pan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tim Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ying Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Zhiwei Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tim Li.

Additional information

Article Highlights

• The Yangtze River Valley experienced record-breaking strong and persistent rainfall in June–July 2020 due to the confrontation of a strong anomalous anticyclone over the western North Pacific to the south and cold/dry advection induced by anomalous northeasterly to the north.

• The extremely strong anomalous anticyclone over the western North Pacific resulted from a combined effect of a quick El Niño to La Niña phase transition and strong Indian Ocean warming.

• The unusual Indian Ocean warming was a result of superposition of an interannual and an interdecadal/long-term trend component.

• The persistent northeasterly anomaly in Northeast Asia was part of a zonally oriented Rossby wave train, forced by heating anomalies over India, the eastern Pacific, and the Atlantic.

This paper is a contribution to the special issue on Summer 2020: Record Rainfall in Asia — Mechanisms, Predictability and Impacts.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Li, T., Sun, Y. et al. Cause of Extreme Heavy and Persistent Rainfall over Yangtze River in Summer 2020. Adv. Atmos. Sci. 38, 1994–2009 (2021). https://doi.org/10.1007/s00376-021-0433-3

Download citation

  • Received: 17 December 2020

  • Revised: 22 April 2021

  • Accepted: 27 April 2021

  • Published: 30 June 2021

  • Issue Date: December 2021

  • DOI: https://doi.org/10.1007/s00376-021-0433-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Yangtze River floods
  • anomalous anticyclone over the western North Pacific
  • CP and EP El Niño
  • Indian Ocean warming
  • La Niña
  • Rossby wave train

关键词

  • 长江洪涝
  • 西北太平洋异常反气旋
  • 中太平洋型和东太平洋型厄尔尼诺
  • 印度洋增暖
  • 拉尼娜
  • 罗斯贝波列
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Summer 2020: Record Rainfall in Asia — Mechanisms, Predictability and Impacts

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.