Bindlish, R., T. Jackson, R. J. Sun, M. Cosh, S. Yueh, and S. Dinardo, 2009: Combined passive and active microwave observations of soil moisture during CLASIC. IEEE Geoscience and Remote Sensing Letters, 6(4), 644–648, https://doi.org/10.1109/LGRS.2009.2028441.
Google Scholar
Boccippio, D. J., S. J. Goodman, and S. Heckman, 2000: Regional differences in tropical lightning distributions. J. Appl. Meteor., 39, 2231–2248, https://doi.org/10.1175/1520-0450(2001)040<2231:RDITLD>2.0.CO;2.
Google Scholar
Cao, D. J., X. S. Qie, S. Duan, Y. J. Xuan, and D. F. Wang, 2012: Lightning discharge process based on short-baseline lightning VHF radiation source locating system. Acta Physica Sinica, 61, 069202, https://doi.org/10.7498/aps.61.069202. (in Chinese with English abstract)
Google Scholar
Cao, D. J., F. Lu, X. H. Zhang, and Z. Q. Zhang, 2018: The FY-4A lightning mapper imager applications on convention monitoring. Satellite Application, 2018(11), 18–23.
Google Scholar
Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 33–64, https://doi.org/10.1007/BF01032000.
Google Scholar
Cecil, D. E., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543–566, https://doi.org/10.1175/MWR-2876.1.
Google Scholar
Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 155–166, 404–414, https://doi.org/10.1016/j.atmosres.2012.06.028.
Google Scholar
Chen S., 2008: GEO-Information Science, Higher Education Press, 531pp.
Google Scholar
Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108(D1), ACL4-1–ACL4-15, https://doi.org/10.1029/2002JD002347.
Google Scholar
DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 1828–1842, https://doi.org/10.1175/MWR-D-11-00236.1.
Google Scholar
Du, J. Y., 2012: A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys. Res. Lett., 39, L15404, https://doi.org/10.1029/2012GL052435.
Google Scholar
Entekhabi, D., and Coauthors, 2010: The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5), 704–716, https://doi.org/10.1109/JPROC.2010.2043918.
Google Scholar
Fang, Z. Y., and D. Y. Qin, 2006: A review of satellite observed heavy rainfall cloud clusters. Journal of Applied Meteorological Science, 17(5), 583–593, https://doi.org/10.3969/j.issn.1001-7313.2006.05.008. (in Chinese with English abstract)
Google Scholar
Florence, R., S. J. English, and R. Engelen, 2018: Satellite data assimilation at ECMWF. Proc. 98th American Meteorological Society Annual Meeting, htps://arns.confex.com/arns/98Annual/webprogram/Paper327333.html.
Han, X. Z., J. Yang, S. H. Tang, and Y. Han, 2020: Vegetation products derived from Fengyun-3D medium resolution spectral imager-II. Journal of Meteorological Research, 34(4), 775–785, https://doi.org/10.1007/s13351-020-0027-5.
Google Scholar
Holmes, T. R. H., R. A. M. De Jeu, M. Owe, and A. J. Dolman, 2009: Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res., 114, D04113, https://doi.org/10.1029/2008JD010257.
Google Scholar
Jackson, T. J., D. M. Le Vine, A. Y. Hsu, A. Oldak, P. J. Starks, C. T. Swift, J. D. Isham, and M. Haken, 1999: Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans. Geosci. Remote Sens., 37(5), 2136–2151, https://doi.org/10.1109/36.789610.
Google Scholar
Jackson, T. J., M. H. Cosh, R. Bindlish, P. J. Starks, D. D. Bosch, M. Seyfried, M. S. Moran, and J. Y. Du, 2010: Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48(12), 4256–4272, https://doi.org/10.1109/TGRS.2010.2051035.
Google Scholar
Li, Y.-J., W. Zheng, J. Chen, and C. Liu, 2017: Fire monitoring and application based on meteorological satellite. Aerospace Shanghai, 44(4), 62–72, https://doi.org/10.13288/j.cnki.1006-1630.2017.04.008. (in Chinese with English abstract)
Google Scholar
Liu, C., Y. J. Li, C. H. Zhao, H. Yan, and H. M. Zhao, 2004: The method of evaluating sub-pixel size and temperature of fire spot in AVHRR data. Journal of Applied Meteorological Science, 15(3), 273–280, https://doi.org/10.3969/j.issn.100-7313.2004.03.003. (in Chinese with English abstract)
Google Scholar
Liu, Q., J. Y. Du, J. C. Shi, and L. M. Jiang, 2013: Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau. Science China Earth Sciences, 56(12), 2173–2185, https://doi.org/10.1007/s11430-013-4700-8.
Google Scholar
Lu, N. M., and R. Z. Wu, 1997: Strong convective cloud characteristics derived from satellite cloud pictuer. Quarterly Journal of Applied Meteorology, 4(3), 269–275. (in Chinese with English abstract)
Google Scholar
Matson, M., and S. R. Schneider, 1984: Fire detection using the NOAA-Series satellite. NOAA Tech. Rep. Noaa: 19318, NESDIS.
Min M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. Journal of Meteorological Research, 31(4), 708–719, https://doi.org/10.1007/s13351-017-6161-z.
Google Scholar
Min M., J. Li, F. Wang, Z. J. Liu, and W. P. Menzel, 2020: Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms. Remote Sens. Environ., 239, 111616, https://doi.org/10.1016/j.rse.2019.111616.
Google Scholar
Mo, T., B. J. Choudhury, T. J. Schmugge, J. R. Wang, and T. J. Jackson, 1982: A model for microwave emission from vegetation-covered fields. J. Geophys. Res., 87(C13), 1229–1237, https://doi.org/10.1029/JC087iC13p11229.
Google Scholar
Qin, D. Y., Z. Y. Fang, and J. X. Jiang, 2005: The relationship between tropical water vapor plume and heavy rainfall during 20–25 July 2002. Acta Meteorologica Sinica, 63(4), 493–503, https://doi.org/10.3321/j.issn:0577-6619.2005.04.011. (in Chinese with English abstract)
Google Scholar
Ren, S. L., W. Zhao, D. J. Cao, and R. X. Liu, 2020: Application of FY-4A daytime convective storm and lightning products in analyzing severe thunderstorm weather in North China. Journal of Marine Meteorology, 40(1), 33–46, https://doi.org/10.19513/j.cnki.issn2096-3599.2020.01.004. (in Chinese with English abstract)
Google Scholar
Shi, J., L. Jiang, L. Zhang, K. S. Chen, J. P. Wigneron, A. Chanzy, and T. J. Jackson, 2006: Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans. Geosci. Remote Sens., 44(11), 3145–3153, https://doi.org/10.1109/TGRS.2006.876706.
Google Scholar
Sun, R. J., Y. P. Zhang, S. L. Wu, H. Yang, and J. Y. Du, 2014: The FY-3B/MWRI soil moisture product and its application in drought monitoring. Proc. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, IEEE, 3296–3298, https://doi.org/10.1109/IGARSS.2014.6947184.
Google Scholar
Wang, J. J., C. Liu, B. Yao, M. Min, H. Letu, Y. Yin, and Y. L. Yung, 2019: A multilayer cloud detection algorithm for the Suomi-NPP Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ., 227, 1–11, https://doi.org/10.1016/j.rse.2019.02.024.
Google Scholar
Wu, X. D., Q. Xiao, J. G. Wen, D. Q. You, and A. Hueni, 2019: Advances in quantitative remote sensing product validation: Overview and current status. Earth-Science Reviews, 196, 102875, https://doi.org/10.1016/j.earscirev.2019.102875.
Google Scholar
Xian D., J. M. Qian, Z. Xu, Y. Gao, and L. W. Liu, 2012: Classification of Meteorological Satellite Data (QX/T 158-2012). China Meteorological Press, 6 pp. (in Chinese)
Xian D., X. Fang, X. Jia, and C. Ying, 2020a: The FY-4 satellite weather application platform and its applications. Satellite Application(2), 20–24. (in Chinese)
Xian, D., P. Zhang, M. Fang, C. Liu, and X. Jia, 2020b: The first Fengyun satellite international user conference. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-2011-5.
Google Scholar
Xu J. M., Yang J., Zhang Z. Q., and Sun A. L., 2010: Chinese Meteorological Satellite, Achievements and Applications. Meteorological Monthly, 36(7), 94–100, https://doi.org/10.7519/j.issn.1000-0526.2010.07.016.
Google Scholar
Xu, W. X., S. A. Rutledge, and W. J. Zhang, 2017: Relationships between total lightning, deep convection, and tropical cyclone intensity change. J. Geophys. Res., 122, 7047–7063, https://doi.org/10.1002/2017JD027072.
Google Scholar
Yang, J., 2012: Meteorological Satellite and Applications. China Meteorological Press, 770–775. (in Chinese)
Yang, J., D. Xian, and S. H. Tang, 2018: Latest progress and applications of the Fengyun meteorological satellite program. Satellite Application(11), 8–14, https://doi.org/10.3969/j.issn.1674-9030.2018.11.005. (in Chinese)
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 34(8), 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Google Scholar
Yang, L., Hu, X., Wang, H., He, X., Liu, P., Xu, N., Yang, Z., Zhang, P., 2020. Preliminary test of quantitative capability in aerosol retrieval over land from MERSI-II onboard Fengyun-3D. National Remote Sensing Bulletin, Published Online, https://doi.org/10.11834/jrs.20200286.
Yang, Z. D., and Coauthors, 2019: Capability of Fengyun-3D satellite in earth system observation. Journal of Meteorological Research, 33(6), 1113–1130, https://doi.org/10.1007/s13351-019-9063-4.
Google Scholar
Zhang, P., and Coauthors, 2019: Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36(9), 1027–1045, https://doi.org/10.1007/s00376-019-8215-x.
Google Scholar
Zhang, P., and Coauthors, 2009: General introduction on payloads, ground segment and data application of Fengyun 3A. Front. Earth Sci. China., 3, 367–373, https://doi.org/10.1007/s11707-009-0036-2.
Google Scholar
Zhang, P., and Coauthors, 2019a: General Comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications. Frontiers in Earth Science, 6, 224, https://doi.org/10.3389/feart.2018.00224.
Google Scholar
Zhang, P., L. Chen, D. Xian, Z. Xu, and M. Guan, 2020a: Update on Fengyun meteorological satellite program and development. Chinese Journal of Space Science, 40 (5), 884–897, https://doi.org/10.11728/cjss2020.05.884.
Google Scholar
Zhang, X. Y., and Coauthors, 2020b: The development and application of satellite remote sensing for atmospheric compositions in China. Atmospheric Research, 245, 105056, https://doi.org/10.1016/j.atmosres.2020.105056.
Google Scholar
Zheng, W., J. Chen, S. H. Tang, X. Q. Hu, and C. Liu, 2020: Fire monitoring based on FY-3D/MERSI-II far-infrared data. Journal of Infrared and Millimeter Waves, 39, 120–127, https://doi.org/10.11972/j.issn.1001-9014.2020.01.016. (in Chinese with English abstract)
Google Scholar