Skip to main content

Record Arctic Ozone Loss in Spring 2020 is Likely Caused by North Pacific Warm Sea Surface Temperature Anomalies

Abstract

Record ozone loss was observed in the Arctic stratosphere in spring 2020. This study aims to determine what caused the extreme Arctic ozone loss. Observations and simulation results are examined in order to show that the extreme Arctic ozone loss was likely caused by record-high sea surface temperatures (SSTs) in the North Pacific. It is found that the record Arctic ozone loss was associated with the extremely cold and persistent stratospheric polar vortex over February–April, and the extremely cold vortex was a result of anomalously weak planetary wave activity. Further analysis reveals that the weak wave activity can be traced to anomalously warm SSTs in the North Pacific. Both observations and simulations show that warm SST anomalies in the North Pacific could have caused the weakening of wavenumber-1 wave activity, colder Arctic vortex, and lower Arctic ozone. These results suggest that for the present-day level of ozone-depleting substances, severe Arctic ozone loss could form again, as long as certain dynamic conditions are satisfied.

摘要

观测发现 2020 年春季北极平流层出现了有记录以来最强的臭氧损耗事件. 本文主要研究导致此次极端臭氧损耗的出现的动力因素. 通过观测资料分析和气候模式的模拟试验, 我们发现 2020 年春季北极臭氧损耗可能是由有记录以来最暖的北太平洋海表面温度异常导致的. 2020 年冬季异常偏冷的北极平流层极涡以及这一强极涡能够持续到 3 月份是春季极端臭氧损耗产生的必要因素. 平流层极涡强度和持续时间一般是由异常行星尺度波动的强弱所决定, 冬春季持续偏弱的行星尺度波动将导致极涡偏强并且持续到春季. 我们研究发现, 2020 年 1 到 3 月份北太平洋异常偏暖的海表面温度可以通过影响阿留申低压进而导致行星波一波的减弱, 从而使得北极平流层极涡加强并且维持到春季, 进而为春季平流层臭氧极端损耗的出现提供了必要的条件. 这些结果表明, 在当前的臭氧损耗物质排放水平, 随着北太平洋海温持续增暖等气候变化导致的合适的动力环境的情况下, 北极平流层极端臭氧损耗仍然可能出现.

This is a preview of subscription content, access via your institution.

References

  1. Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  2. Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 1–21, https://doi.org/10.1002/qj.2132.

    Article  Google Scholar 

  3. Blackport, R., and J. A. Screen, 2019: Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett., 46, 2213–2221, https://doi.org/10.1029/2018GL081469.

    Article  Google Scholar 

  4. Calvo, N., R. García-Herrera, and R. R. Garcia, 2008: The ENSO signal in the stratosphere. Annals of the New York Academy of Sciences, 1146, 16–31, https://doi.org/10.1196/annals.1446.008.

    Article  Google Scholar 

  5. Dameris, M., D. G. Loyola, M. Nützel, M. Coldewey-Egbers, C. Lerot, F. Romahn, and M. van Roozendael, 2020: First description and classification of the ozone hole over the Arctic in boreal spring 2020. Atmospheric Chemistry and Physics Discussions, in press, https://doi.org/10.5194/acp-2020-746.

  6. Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The Teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596.

    Article  Google Scholar 

  7. Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res.: Atmos., 112, D09301, https://doi.org/10.1029/2006JD007485.

    Google Scholar 

  8. García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res.: Atmos., 111, D06101, https://doi.org/10.1029/2005JD006061.

    Google Scholar 

  9. García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 5195–5216, https://doi.org/10.1175/JCLI-D-14-00472.1.

    Article  Google Scholar 

  10. Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res.: Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920.

    Article  Google Scholar 

  11. Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1155/JCLI-D-16-0758.1.

    Article  Google Scholar 

  12. Hamilton, K., 1993: An examination of observed southern oscillation effects in the northern hemisphere stratosphere. J. Atmos. Sci., 50, 3468–3474, https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.

    Article  Google Scholar 

  13. Holton, J. R., and H.-C. Tan, 1980: The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb. J. Atmos. Sci., 37, 2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    Article  Google Scholar 

  14. Hu, D. Z., Z. Y. Guan, W. S. Tian, and R. C. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.

    Article  Google Scholar 

  15. Hu, Y. Y., 2020: The very unusual polar stratosphere in 2019–2020. Science Bulletin, 65, 1775–1777, https://doi.org/10.1016/j.scib.2020.07.011.

    Article  Google Scholar 

  16. Hu, Y. Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and northern hemisphere annular mode. J. Climate, 15, 1659–1673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.

    Article  Google Scholar 

  17. Hu, Y. Y., and K. K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16, 3027–3038, https://doi.org/10.1175/1520-0442(2003)016<3027:POLCIP>2.0.CO;2.

    Article  Google Scholar 

  18. Hu, Y. Y., and Y. Xia, 2013: Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010–2011. Chinese Science Bulletin, 58, 3155–3160, https://doi.org/10.1007/s11434-013-5945-5.

    Article  Google Scholar 

  19. Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Article  Google Scholar 

  20. Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2011: The Arctic vortex in March 2011: A dynamical perspective. Atmospheric Chemistry and Physics, 11 11, 447–11 453, https://doi.org/10.5194/acp-11-11447-2011.

    Article  Google Scholar 

  21. Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res.: Atmos., 117, D19110, https://doi.org/10.1029/2012JD017819.

    Google Scholar 

  22. Jadin, E. A., K. Wei, Y. A. Zyulyaeva, W. Chen, and L. Wang, 2010: Stratospheric wave activity and the Pacific Decadal Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 1163–1170, https://doi.org/10.1016/j.jastp.2010.07.009.

    Article  Google Scholar 

  23. Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.

    Article  Google Scholar 

  24. King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the northern hemisphere. Climate Dyn., 46, 1185–1195, https://doi.org/10.1007/s00382-015-2639-5.

    Article  Google Scholar 

  25. Lawrence, Z. D., J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, 2020: The remarkably strong arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys. Res.: Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271.

    Article  Google Scholar 

  26. Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469–475, https://doi.org/10.1038/nature10556.

    Article  Google Scholar 

  27. Manney, G. L., and Coauthors, 2020: Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett., 47, e2020GL089063, https://doi.org/10.1029/2020GL089063.

    Article  Google Scholar 

  28. McKenna, C. M., T. J. Bracegirdle, E. F. Shuckburgh, P. H. Haynes, and M. M. Joshi, 2018: Arctic sea ice loss in different regions leads to contrasting northern hemisphere impacts. Geophys. Res. Lett., 45, 945–954, https://doi.org/10.1002/2017GL076433.

    Article  Google Scholar 

  29. Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res.: Atmos., 120, 3209–3227, https://doi.org/10.1002/2014JD022848.

    Article  Google Scholar 

  30. Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 1467–1479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.

    Article  Google Scholar 

  31. Rao, J., and C. I. Garfinkel, 2020: Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. J. Geophys. Res.: Atmos., 125, e2020JD033524, https://doi.org/10.1029/2020JD033524.

    Google Scholar 

  32. Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1.

    Article  Google Scholar 

  33. Sun, L. T., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 7824–7845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    Article  Google Scholar 

  34. WMO, 2018: Scientific assessment of ozone depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, Geneva, Switzerland, 588 pp.

  35. Woo, S.-H., M.-K. Sung, S.-W. Son, and J.-S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481–3492, https://doi.org/10.1007/s00382-015-2551-z.

    Article  Google Scholar 

  36. Xia, Y., Y. Y. Hu, and J. P. Liu, 2020: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Science Bulletin, 65, 1667–1674, https://doi.org/10.1016/j.scib.2020.06.011.

    Article  Google Scholar 

  37. Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259–5273, https://doi.org/10.5194/acp-12-5259-2012.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jian YUE for helpful comments. This work is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 41888101. Y. XIA is supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP), Grant No. 2019QZKK0604, Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO-2020-09), and the Fundamental Research Funds for the Central Universities. The authors declare that datasets for this research are available in the following online repository. The satellite observations of the total column ozone can be found at https://ozonewatch.gsfc.nasa.gov/. The MERRA2 reanalysis data-set is available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. The NOAA ERSST5 can be accessed at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. The NOAA High-resolution Blended Analysis of Daily SST, version 2 can be accessed at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongyun Hu.

Additional information

Article Highlights

• Record Arctic ozone loss was observed in spring 2020.

• The Arctic ozone loss in spring 2020 was associated with a large reduction of wavenumber-1 wave activity.

• The reduction of planetary wave activity in spring 2020 was likely caused by anomalously warm SSTs in the North Pacific.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Hu, Y., Zhang, J. et al. Record Arctic Ozone Loss in Spring 2020 is Likely Caused by North Pacific Warm Sea Surface Temperature Anomalies. Adv. Atmos. Sci. 38, 1723–1736 (2021). https://doi.org/10.1007/s00376-021-0359-9

Download citation

Key words

  • Arctic ozone loss
  • stratospheric polar vortex
  • sea surface temperature
  • planetary-scale wave
  • climate change

关键词

  • 北极臭氧损耗
  • 平流层极涡
  • 北太平洋海温
  • 行星波