Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009.
Article
Google Scholar
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nature Geoscience, 8, 261–268, https://doi.org/10.1038/ngeo2398.
Article
Google Scholar
Cess, R. D., and Coauthors, 1989: Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516, https://doi.org/10.1126/science.245.4917.513.
Article
Google Scholar
Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601–16615, https://doi.org/10.1029/JD095iD10p16601.
Article
Google Scholar
Chen, J. N., B. Jie, Z. H. Zhou, and H. X. Fang, 2017: Summary of inversion methods to remote sensing cloud top height with satellite data. Meteorological, Hydrological and Marine Instruments, 34, 116–120, https://doi.org/10.3969/j.issn.1006-009X.2017.01.029. (in Chinese with English abstract)
Google Scholar
Du, M. Y., S. Kawashima, S. Yonemura, X. Z. Zhang, and S. B. Chen, 2004: Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41, 241–249, https://doi.org/10.1016/j.gloplacha.2004.01.010.
Article
Google Scholar
Eyre, J., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Tech. Memo No 176, 28 pp, https://doi.org/10.21957/xsg8d92y3.
Fan, H. J., Y. P. Huang, and W. B. Li, 2017: Overview of retrieval algorithm of cloud-top height based on satellite infrared remote sensing. Acta Scientiarum Naturalium Universitatis Pekinensis, 53, 783–792, https://doi.org/10.13209/j.0479-8023.2016.126. (in Chinese with English abstract)
Google Scholar
Fischer, J., and H. Grassl, 1991: Detection of cloud-top height from backscattered radiances within the oxygen A Band. Part 1: Theoretical study. J. Appl. Meteorol., 30, 1245–1259, https://doi.org/10.1175/1520-0450(1991)030<1245:DOCTHF>2.0.CO;2.
Article
Google Scholar
Fischer, J., W. Cordes, A. Schmitz-Peiffer, W. Renger, and P. Mörl, 1991: Detection of cloud-top height from backs-cattered radiances within the Oxygen A Band. Part 2: Measurements. J. Appl. Meteorol., 30, 1260–1267, https://doi.org/10.1175/1520-0450(1991)030<1260:DOCTHF>2.0.CO;2.
Article
Google Scholar
Garay, M. J., S. P. de Szoeke, and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the Southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113, D18204, https://doi.org/10.1029/2008JD009975.
Article
Google Scholar
Gui, S., S. L. Liang, and L. Li, 2010: Evaluation of satellite-estimated surface longwave radiation using ground-based observations. J. Geophys. Res., 115, D18214, https://doi.org/10.1029/2009JD013635.
Article
Google Scholar
Hamann, U., and Coauthors, 2014: Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmospheric Measurement Techniques, 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014.
Article
Google Scholar
Hawkinson, J. A., W. Feltz, and S. A. Ackerman, 2005: A comparison of GOES sounder-and cloud lidar-and radar-retrieved cloud-top heights. J. Appl. Meteorol., 44, 1234–1242, https://doi.org/10.1175/JAM2269.1.
Article
Google Scholar
Hollars, S., Q. Fu, J. Comstock, and T. Ackerman, 2004: Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmospheric Research, 72, 169–186, https://doi.org/10.1016/j.atmosres.2004.03.015.
Article
Google Scholar
Huang, Y., S. Siems, M. Manton, A. Protat, L. Majewski, and H. Nguyen, 2019: Evaluating Himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature. J. Atmos. Ocean. Technol., 36, 2327–2347, https://doi.org/10.1175/JTECH-D-18-0231.1.
Article
Google Scholar
Huo, J., D. R. Lu, S. Duan, Y. H. Bi, and B. Liu, 2020a: Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmospheric Measurement Techniques, 13, 1–11, https://doi.org/10.5194/amt-13-1-2020.
Article
Google Scholar
Huo, J., J. Li, M. Z. Duan, D. R. Lv, C. Z. Han, and Y. H. Bi, 2020b: Measurement of cloud top height: Comparison of MODIS and ground-based millimeter radar. Remote Sensing, 12, 1616, https://doi.org/10.3390/rs12101616.
Article
Google Scholar
Iwabuchi, H., M. Saito, Y. Tokoro, N. S. Putri, and M. Sekiguchi, 2016: Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements. Progress in Earth and Planetary Science, 3, 32, https://doi.org/10.1186/s40645-016-0108-3.
Article
Google Scholar
Iwabuchi, H., N. S. Putri, M. Saito, Y. Tokoro, M. Sekiguchi, P. Yang, and B. A. Baum, 2018: Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteor. Soc. Japan, 96B, 27–42, https://doi.org/10.2151/jmsj.2018-001.
Article
Google Scholar
Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608–1624, https://doi.org/10.1175/BAMS-88-10-1608.
Article
Google Scholar
Kuze, A., and K. V. Chance, 1994: Analysis of cloud top height and cloud coverage from satellites using the O2A and B bands. J. Geophys. Res., 99, 14481–14491, https://doi.org/10.1029/94JD01152.
Article
Google Scholar
Letu, H. S., Yang, K., Nakajima, T. Y., Ishimoto, H., Nagao, T. M., Riedi, J., Baran, A. J., Ma, R., Wang, T. X., Shang, H. Z., Khatri, P., Chen, L. F., Shi, C. X., Shi, and J. C., 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ., 239, 16, https://doi.org/10.1016/j.rse.2019.111583.
Article
Google Scholar
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed., Academic Press, 583 pp..
Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729–1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.
Article
Google Scholar
Lu, D. R., W. L. Pan, and Y. N. Wang, 2018: Atmospheric profiling synthetic observation system in Tibet. Adv. Atmos. Sci., 35, 264–267, https://doi.org/10.1007/s00376-017-7251-7.
Article
Google Scholar
Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.
Article
Google Scholar
Min, M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteor. Res., 31, 708–719, https://doi.org/10.1007/s13351-017-6161-z.
Article
Google Scholar
Mouri, K., T. Izumi, H. Suzue, and R. Yoshida, 2016: Algorithm Theoretical Basis Document of cloud type/phase product. Meteorological Satellite Center Technical Note, 61, 19–31.
Google Scholar
NASA, 2020: ISCCP Definition of Cloud Types. [Available from https://isccp.giss.nasa.gov/cloudtypes.html].
Naud, C. M., J. P. Muller, and E. E. Clothiaux, 2003: Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site. J. Geophys. Res., 108, 4140, https://doi.org/10.1029/2002JD002887.
Article
Google Scholar
Nieman, S. J., J. Schmetz, and W. P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteorol., 32, 1559–1568, https://doi.org/10.1175/1520-0450(1993)032<1559:ACOSTT>2.0.CO;2.
Article
Google Scholar
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, https://doi.org/10.1126/science.243.4887.57.
Article
Google Scholar
Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. Van De Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteorol., 32, 1206–1225, https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.
Article
Google Scholar
Stubenrauch, C. J., A. Del Genio, and W. B. Rossow, 1997: Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget. J. Climate, 10, 273–287, https://doi.org/10.1175/1520-0442(1997)010<0273:IOSCVS>2.0.CO;2.
Article
Google Scholar
Tan, Z. H., S. Ma, X. B. Zhao, W. Yan, and W. Lu, 2019: Evaluation of cloud top height retrievals from China’s next-generation geostationary meteorological satellite FY-4A. Journal of Meteorological Research, 33, 553–562, https://doi.org/10.1007/s13351-019-8123-0.
Article
Google Scholar
Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 3040–3061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.
Article
Google Scholar
Wang, F., and Y. Zhao, 2020: An algorithm for retrieving cloud top height based on geostationary satellite data of Fengyun-4. Journal of Sichuan Normal University (Natural Science), 44(3), https://doi.org/10.3969/j.issn.1001-8395.2021.03.000. (in Chinese with English abstract)
Wang, Y., C. H. Wang, C. Z. Shi, and B. H. Xiao, 2018a: Integration of cloud top heights retrieved from FY-2 meteorological satellite, radiosonde, and ground-based millimeter wavelength cloud radar observations. Atmospheric Research, 214, 284–295, https://doi.org/10.1016/j.atmosres.2018.07.025.
Article
Google Scholar
Wang, Z., Z. H. Wang, X. Z. Cao, and F. Tao, 2018b: Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar. Atmospheric Research, 199, 113–127, https://doi.org/10.1016/j.atmosres.2017.09.009.
Article
Google Scholar
Webb, M. J., and Coauthors, 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geoscientific Model Development, 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017.
Article
Google Scholar
Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, https://doi.org/10.1029/2007GL030676.
Article
Google Scholar
Yanai, M. H., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319–351, https://doi.org/10.2151/jmsj1965.70.1B_319.
Article
Google Scholar
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637–1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Article
Google Scholar