Skip to main content

Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations

Abstract

Future changes in tropical cyclone (TC) activity over the western North Pacific (WNP) under the representative concentration pathway RCP4.5 are investigated based on a set of 21st century climate change simulations over East Asia with the regional climate model RegCM4 driven by five global models. The RegCM4 reproduces the major features of the observed TC activity over the region in the present-day period of 1986–2005, although with the underestimation of the number of TC genesis and intensity. A low number of TCs making landfall over China is also simulated. By the end of the 21st century (2079–98), the annual mean frequency of TC genesis and occurrence is projected to increase over the WNP by 16% and 10%, respectively. The increase in frequency of TC occurrence is in good agreement among the simulations, with the largest increase over the ocean surrounding Taiwan Island and to the south of Japan. The TCs tend to be stronger in the future compared to the present-day period of 1986–2005, with a large increase in the frequency of strong TCs. In addition, more TCs landings are projected over most of the China coast, with an increase of ∼18% over the whole Chinese territory.

This is a preview of subscription content, access via your institution.

References

  1. Au-Yeung, A. Y. M., and J. C. L. Chan, 2012: Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific. Climate Dyn., 39, 783–794, https://doi.org/10.1007/s00382-011-1268-x.

    Article  Google Scholar 

  2. Bengtsson, L., H. Böttger, and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34, 440–457, https://doi.org/10.3402/tellusa.v34i5.10830.

    Article  Google Scholar 

  3. Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus A, 47, 175–196, https://doi.org/10.3402/tellusa.v47i2.11500.

    Article  Google Scholar 

  4. Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013.

    Article  Google Scholar 

  5. Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys Res. Lett., 17, 1917–1920, https://doi.org/10.1029/GL017i011p01917.

    Article  Google Scholar 

  6. Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902, https://doi.org/10.1175/jcli-d-12-00549.1.

    Article  Google Scholar 

  7. Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 1152–1162, https://doi.org/10.1175/1520-0434(2002)017<1152:itdato>2.0.co;2.

    Article  Google Scholar 

  8. Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annual Review of Fluid Mechanics, 37, 99–128, https://doi.org/10.1146/annurev.fluid.37.061903.174702.

    Article  Google Scholar 

  9. Chan, J. C. L., and M. Xu, 2009: Inter-annual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. International Journal of Climatology, 29, 1284–1293, https://doi.org/10.1002/joc.1782.

    Article  Google Scholar 

  10. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model-HadGEM2. Geoscientific Model Development, 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011.

    Article  Google Scholar 

  11. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  12. Diro, G. T., F. Giorgi, R. Fuentes-Franco, K. J. E. Walsh, G. Giuliani, and E. Coppola, 2014: Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Climatic Change, 125 79–94, https://doi.org/10.1007/s10584-014-1155-7.

    Article  Google Scholar 

  13. Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335, https://doi.org/10.1175/1520-0469(1991)048<2313:asfrcc>2.0.co;2.

    Article  Google Scholar 

  14. Emanuel, K. A., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 110, 12219–12224, https://doi.org/10.1073/pnas.1301293110.

    Article  Google Scholar 

  15. Emanuel, K. A., 2021: Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. J. Climate, 34, 57–70, https://doi.org/10.1175/JCLI-D-20-0367.1.

    Article  Google Scholar 

  16. Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:daeoac>2.0.co;2.

    Article  Google Scholar 

  17. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

    Article  Google Scholar 

  18. Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 741–866.

    Google Scholar 

  19. Fuentes-Franco, R., F. Giorgi, E. Coppola, and K. Zimmermann, 2017: Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Climate Dyn., 49, 547–561, https://doi.org/10.1007/s00382-016-3357-3.

    Article  Google Scholar 

  20. Gao, X. J., Y. Shi, and F. Giorgi, 2016: Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model. Atmos. Ocean. Sci. Lett., 9, 246–254, https://doi.org/10.1080/16742834.2016.1172938.

    Article  Google Scholar 

  21. Gao, X. J., and Coauthors, 2017: Performance of RegCM4 over major river basins in China. Adv. Atmos. Sci., 34, 441–455, https://doi.org/10.1007/s00376-016-6179-7.

    Article  Google Scholar 

  22. Gao, X. J., and Coauthors, 2018: Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations. Atmos. Ocean. Sci. Lett., 11, 291–299, https://doi.org/10.1080/16742834.2018.1471578.

    Article  Google Scholar 

  23. Gentry, M. S., and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Res., 138, 688–704, https://doi.org/10.1175/2009MWR2976.1.

    Article  Google Scholar 

  24. Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J Geophys. Res. Atmos., 124, 5696–5723, https://doi.org/10.1029/2018jd030094.

    Article  Google Scholar 

  25. Giorgi, F., M. R. Marinucci, G. T. Bates, and G. De Canio, 1993: Development of a second-generation regional climate model (REGCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832, https://doi.org/10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.

    Article  Google Scholar 

  26. Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175–183.

    Google Scholar 

  27. Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29, https://doi.org/10.3354/cr01018.

    Article  Google Scholar 

  28. Gray, W. M., 1979: Meteorology over the tropical oceans. Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation, D. B. Shaw, Eds., Royal Meteorological Society, 155–218.

  29. Gutowski, W. J. Jr., and Coauthors, 2016: WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geoscientific Model Development, 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016.

    Article  Google Scholar 

  30. Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247–257, https://doi.org/10.1007/bf00198619.

    Article  Google Scholar 

  31. Han, Z. Y., X. J. Gao, Y. Shi, J. Wu, M. L. Wang, and F. Giorgi, 2015: Development of Chinese high resolution land cover data for the RegCM4/CLM and its impact on regional climate simulation. Journal of Glaciology and Geocryology, 37, 857–866, https://doi.org/10.7522/j.issn.1000-0240.2015.0095. (in Chinese with English abstract)

    Google Scholar 

  32. Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 1357–1363, https://doi.org/10.1175/2010bams2877.1.

    Article  Google Scholar 

  33. He, F., and D. J. Posselt, 2015: Impact of parameterized physical processes on simulated tropical cyclone characteristics in the community atmosphere model. J. Climate, 28, 9857–9872, https://doi.org/10.1175/jcli-d-15-0255.1.

    Article  Google Scholar 

  34. Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecastiong. Mon. Wea. Rev., 118, 1561–1575, https://doi.org/10.1175/1520-0493(1990)118<1561:ahramt>2.0.co;2.

    Article  Google Scholar 

  35. Huang, W.-R., and J. C. L. Chan, 2014: Dynamical downscaling forecasts of Western North Pacific tropical cyclone genesis and landfall. Climate Dyn., 42, 2227–2237, https://doi.org/10.1007/s00382-013-1747-3.

    Article  Google Scholar 

  36. Iversen, T., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M-Part 2: Climate response and scenario projections. Geoscientific Model Development, 6, 389–415, https://doi.org/10.5194/gmd-6-389-2013.

    Article  Google Scholar 

  37. Jiang, D. B., Z. P. Tian, and X. M. Liang, 2016: Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. International Journal of Climatology, 36, 1114–1133, https://doi.org/10.1002/joc.4406.

    Article  Google Scholar 

  38. Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765–778, https://doi.org/10.1007/s00382-015-2869-6.

    Article  Google Scholar 

  39. Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth Systems, 5, 422–446, https://doi.org/10.1002/jame.20023.

    Article  Google Scholar 

  40. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research community climate model: CCM3. J. Climate, 11, 1131–1149, https://doi.org/10.1175/1520-0442(1998)011<1131:tncfar>2.0.co;2.

    Article  Google Scholar 

  41. Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376, https://doi.org/10.1174/2009bams2744.1.

    Article  Google Scholar 

  42. Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A technique for combining global tropical cyclone best track data. J. Atmos. Ocean. Technol., 27, 680–692, https://doi.org/10.1174/2009jtecha1267.1.

    Article  Google Scholar 

  43. Lee, H., C. S. Jin, D. H. Cha, M. Lee, D. K. Lee, M. S. Suh, S. Y. Hong, and H. S. Kang, 2019: Future change in tropical cyclone activity over the Western North Pacific in CORDEX-East Asia multi-RCMs forced by HadGEM2-AO. J. Climate, 32, 4043–4067, https://doi.org/10.1175/jcli-d-18-0575.1.

    Article  Google Scholar 

  44. Li, R. C. Y., W. Zhou, C. M. Shun, and T. C. Lee, 2017: Change in destructiveness of landfalling tropical cyclones over China in recent decades. J. Climate, 30, 3367–3379, https://doi.org/10.1175/jcli-d-16-0258.1.

    Article  Google Scholar 

  45. Liang, J., C. G. Wang, and K. I. Hodges, 2017: Evaluation of tropical cyclones over the South China Sea simulated by the 12 km MetUM regional climate model. Quart. J. Roy. Meteor. Soc., 143, 1641–1646, https://doi.org/10.1002/qj.3035.

    Article  Google Scholar 

  46. Lok, C. C. F., and J. C. L. Chan, 2018a: Changes of tropical cyclone landfalls in South China throughout the twenty-first century. Climate Dyn., 51, 2467–2483, https://doi.org/10.1007/s00382-017-4023-0.

    Article  Google Scholar 

  47. Lok, C. C. F., and J. C. L. Chan, 2018b: Simulating seasonal tropical cyclone intensities at landfall along the South China coast. Climate Dyn., 50, 2661–2672, https://doi.org/10.1007/s00382-017-3762-2.

    Article  Google Scholar 

  48. Manabe, S., J. L. Holloway Jr., and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 480–613, https://doi.org/10.1175/1520-0469(1970)027<0580:tciati>2.0.co;2.

    Article  Google Scholar 

  49. Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–746, https://doi.org/10.1038/nature08823.

    Article  Google Scholar 

  50. Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 73–76, https://doi.org/10.2151/sola.2010-019.

    Article  Google Scholar 

  51. Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 1154–1169, https://doi.org/10.1175/2010jcli3723.1.

    Article  Google Scholar 

  52. Murakami, H., R. Mizuta, and E. Shindo, 2012a: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 2469–2484, https://doi.org/10.1007/s00382-011-1223-x.

    Article  Google Scholar 

  53. Murakami, H., and Coauthors, 2012b: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 3237–3260, https://doi.org/10.1175/jcli-d-11-00415.1.

    Article  Google Scholar 

  54. Murakami, H., M. Sugi, and A. Kitoh, 2013a: Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Climate Dyn., 40, 1949–1968, https://doi.org/10.1007/s00382-012-1407-z.

    Article  Google Scholar 

  55. Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013b: Projected increase in tropical cyclones near Hawaii. Nature Climate Change, 3, 749–754, https://doi.org/10.1038/nclimate1890.

    Article  Google Scholar 

  56. Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. Biogeosci., 113, https://doi.org/10.1029/2007jg000463.

  57. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259–276, https://doi.org/10.2151/jmsj.84.259.

    Article  Google Scholar 

  58. Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos., 105, 29579–29594, https://doi.org/10.1029/2000jd900415.

    Article  Google Scholar 

  59. Pal, J. S., and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 1395–1410, https://doi.org/10.1175/bams-88-9-1395.

    Article  Google Scholar 

  60. Phan-Van, T., L. Trinh-Tuan, H. Bui-Hoang, and C. Kieu, 2014: Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2. Climate Researc, 62, 115–129, https://doi.org/10.3354/cr01267.

    Article  Google Scholar 

  61. Reed, K. A., and C. Jablonowski, 2011: Assessing the uncertainty in tropical cyclone simulations in NCAR’s Community Atmosphere Model. Journal of Advances in Modeling Earth Systems, 3, M08002, https://doi.org/10.1029/2011ms000076.

    Article  Google Scholar 

  62. Reed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay, 2014: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 3603–3608, https://doi.org/10.1002/2015gl063974.

    Article  Google Scholar 

  63. Rotstayn, L. D., and Coauthors, 2010: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. International Journal of Climatology, 30, 1067–1088, https://doi.org/10.1002/joc.1952.

    Google Scholar 

  64. Seneviratne, S. I., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), Field et al., Eds., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 109–230.

    Google Scholar 

  65. Shen, W. Q., J. P. Tang, Y. Wang, S. Y. Wang, and X. R. Niu, 2017: Evaluation of WRF model simulations of tropical cyclones in the western North Pacific over the CORDEX East Asia domain. Climate Dyn., 48, 2419–2435, https://doi.org/10.1007/s00382-016-3213-5.

    Article  Google Scholar 

  66. Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. Journal of Advances in Modeling Earth Systems, 5, 146–172, https://doi.org/10.1002/jame.20015.

    Article  Google Scholar 

  67. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP4 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/bams-d-11-00094.1.

    Article  Google Scholar 

  68. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2.

    Article  Google Scholar 

  69. Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn., 53, 5999–6033, https://doi.org/10.1007/s00382-019-04913-y.

    Article  Google Scholar 

  70. Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307–2314, https://doi.org/10.1175/jcli4074.1.

    Article  Google Scholar 

  71. Wang, C. G., J. Liang, and K. I. Hodges, 2017: Projections of tropical cyclones affecting Vietnam under climate change: Down-scaled HadGEM2-ES using PRECIS 2.1. Quart. J. Roy. Meteor. Soc., 143, 1844–1859, https://doi.org/10.1002/qj.3046.

    Article  Google Scholar 

  72. Wang, Y. J., S. S. Wen, X. C. Li, F. Thomas, B. D. Su, R. Wang, and T. Jiang, 2016: Spatiotemporal distributions of influential tropical cyclones and associated economic losses in China in 1984–2015. Natural Hazards, 84, 2009–2030, https://doi.org/10.1007/s11069-016-2531-6.

    Article  Google Scholar 

  73. Wu, J., and X. J. Gao, 2020: Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations. Climate Dyn., 54, 1113–1130, https://doi.org/10.1007/s00382-019-05047-x.

    Article  Google Scholar 

  74. Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 3405–3424, https://doi.org/10.1175/jcli-d-12-00830.1.

    Article  Google Scholar 

  75. Wu, L. G., B. Wang, and S. Q. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, https://doi.org/10.1029/2005gl022937.

    Google Scholar 

  76. Yokoi, S., Y. N. Takayabu, and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 4096–4111, https://doi.org/10.1175/jcli-d-12-00218.1.

    Article  Google Scholar 

  77. Zeng, X. B., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030.

    Article  Google Scholar 

  78. Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 5923–5941, https://doi.org/10.1175/jcli-d-16-0597.1.

    Article  Google Scholar 

  79. Zhang, C. X., and Y. Q. Wang, 2018: Why is the simulated climatology of tropical cyclones so sensitive to the choice of cumulus parameterization scheme in the WRF model? Climate Dyn., 51, 3613–3633, https://doi.org/10.1007/s00382-018-4099-1.

    Article  Google Scholar 

  80. Zhang, Q., L. G. Wu, and Q. G. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–496, https://doi.org/10.1175/2008bams2631.1.

    Article  Google Scholar 

  81. Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009jcli3049.1.

    Article  Google Scholar 

  82. Zhao, M., I. M. Held, and S.-J. Lin, 2012: Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69, 2272–2283, https://doi.org/10.1175/jas-d-11-0238.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the three anonymous reviewers for their valuable comments on this work. This research was jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20060401), the National Natural Science Foundation of China (Grant No. 41675103), and the Science and Technology Program of Yunnan (Grant No. 2018BC007). The authors acknowledge Geophysical Fluid Dynamics Laboratory for providing the TSTORMS (Detection and Diagnosis of Tropical Storms in High-Resolution Atmospheric Models) software code (available from https://www.gfdl.noaa.gov/tstorms/) to detect and track tropical cyclones in the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuejie Gao.

Additional information

Article Highlights

• A set of regional climate model RegCM4 simulations at 25-km grid spacing driven by five global models over East Asia was used.

• RegCM4 reproduces the major features of the observed tropical cyclone activity over the region in the present-day period.

• Tropical cyclones tend to be stronger in the future, with more tropical cyclones making landfall over China

This paper is a contribution to the special issue on the Climate Change and Variability of Tropical Cyclone Activity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Gao, X., Zhu, Y. et al. Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations. Adv. Atmos. Sci. (2021). https://doi.org/10.1007/s00376-021-0286-9

Download citation

Key words

  • regional climate model
  • RegCM4
  • tropical cyclone
  • western North Pacific