Skip to main content

An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization

An Erratum to this article was published on 09 October 2020

This article has been updated

Abstract

Predicting tropical cyclone (TC) genesis is of great societal importance but scientifically challenging. It requires fine-resolution coupled models that properly represent air-sea interactions in the atmospheric responses to local warm sea surface temperatures and feedbacks, with aid from coherent coupled initialization. This study uses three sets of high-resolution regional coupled models (RCMs) covering the Asia-Pacific (AP) region initialized with local observations and dynamically downscaled coupled data assimilation to evaluate the predictability of TC genesis in the West Pacific. The AP-RCMs consist of three sets of high-resolution configurations of the Weather Research and Forecasting-Regional Ocean Model System (WRF-ROMS): 27-km WRF with 9-km ROMS, and 9-km WRF with 3-km ROMS. In this study, a 9-km WRF with 9-km ROMS coupled model system is also used in a case test for the predictability of TC genesis. Since the local sea surface temperatures and wind shear conditions that favor TC formation are better resolved, the enhanced-resolution coupled model tends to improve the predictability of TC genesis, which could be further improved by improving planetary boundary layer physics, thus resolving better air-sea and air-land interactions.

摘 要

热带气旋生成的预报预测具有重大的社会经济价值和科学意义, 是一个极具科学挑战性的课题. 在实现方法方面, 需要具有耦合同化功能的高分辨率耦合模式, 恰当地描述诸如大气对局地暖海表温度的响应和反馈这样的海气相互作用过程. 本研究采用三套覆盖亚太地区 (AP) 的高分辨率区域耦合模式 (RCMs) 来评估西太平洋热带气旋生成的可预报性, 这些模式都通过动力降尺度耦合同化来融入本地观测进行初始化. AP-RCMs 分别由三套高分辨率的 WRF-ROMS (Weather Research and Forecasting – Regional Ocean Model System) 耦合模式组成: 27-km WRF 与 9-km ROMS, 9-km WRF 与 3-km ROMS, 以及 9-km WRF 与 9-km ROMS. 结果表明, 适当分辨率的耦合模式配合平衡协调的耦合初始化方案可以提前 1-5 天预报出该区域内 80% 的热带气旋生成, 更高分辨率的耦合模式可以更好的解析有利于热带气旋形成的局地海表温度和风切变条件, 因此具有提高热带气旋生成可预报性的趋势. 未来通过改善模式行星边界层的物理过程, 更好地解析海-气-陆之间的相互作用, 可以进一步提高热带气旋生成的可预报性.

This is a preview of subscription content, access via your institution.

Change history

  • 09 October 2020

    In the figure legends of Fig. 8, the solid-dot and dashed lines should be switched over. The correct figure is shown below. We apologize for that.

References

  1. Alley, R. B., K. A. Emanuel, and F. Q. Zhang, 2019: Advances in weather prediction. Science, 363(6425), 342–344, https://doi.org/10.1126/science.aav7274.

    Google Scholar 

  2. Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 162, 897–914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    Google Scholar 

  3. Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model. Mon. Wea. Rev., 141, 964–986, https://doi.org/10.1175/MWR-D-12-00077.1.

    Google Scholar 

  4. Chen, X. C., and F. Q. Zhang, 2019: Development of a convection-permitting air-sea-coupled ensemble data assimilation system for tropical cyclone prediction. Journal of Advances in Modeling Earth Systems, 11, 3474–3496, https://doi.org/10.1029/2019MS001795.

    Google Scholar 

  5. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    Google Scholar 

  6. Courtier, P., J.-N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912.

    Google Scholar 

  7. Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Wea. Rev., 136, 1990–2005, https://doi.org/10.1175/2007MWR2085.1.

    Google Scholar 

  8. Davis, C., and Coauthors, 2011: High-resolution hurricane forecasts. Computing in Science & Engineering, 13, 22–30, https://doi.org/10.1109/MCSE.2010.74.

    Google Scholar 

  9. Dee, D. P., and Coauthors, 2011: The ERA — Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828.

    Google Scholar 

  10. Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sensing of Environment, 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017.

    Google Scholar 

  11. Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27(3), 104–115, https://doi.org/10.5670/oceanog.2014.72.

    Google Scholar 

  12. Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1–15.68, https://doi.org/10.1175/amsmonographs-d-18-0016.1.

    Google Scholar 

  13. Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43(6), 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    Google Scholar 

  14. Emanuel, K. A., 1995a: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 1529–1534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    Google Scholar 

  15. Emanuel, K. A., 1995b: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 3960–3968, https://doi.org/10.1175/1520-0469(1995)052<3960:TBOASH>2.0.CO;2.

    Google Scholar 

  16. Fudeyasu, H., Y. Q. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010a: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part II: System-scale and mesoscale processes. Mon. Wea. Rev., 168, 4305–4327, https://doi.org/10.1175/2010MWR3475.1.

    Google Scholar 

  17. Fudeyasu, H., Y. Q. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010b: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 168, 4285–4304, https://doi.org/10.1175/2010MWR3474.1.

    Google Scholar 

  18. Gopalakrishnan, S. G., S. Goldenberg, T. Quirino, X. J. Zhang, F. Marks Jr., K.-S. Yeh, R. Atlas, and V. Tallapragada, 2012: Toward improving high-resolution numerical hurricane fore-casting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647–666, https://doi.org/10.1175/WAF-D-11-00055.1.

    Google Scholar 

  19. Gula, J., and W. R. Peltier, 2012: Dynamical downscaling over the great lakes basin of north america using the WRF regional climate model: The impact of the great lakes system on regional greenhouse warming. J. Climate, 5, 7723–7742, https://doi.org/10.1175/JCLI-D-11-00388.1.

    Google Scholar 

  20. Halliwell, G. R., Jr., L. K. Shay, S. D. Jacob, O. M. Smedstad, and E. W. Uhlhorn, 2008: Improving ocean model initialization for coupled tropical cyclone forecast models using GODAE Nowcasts. Mon. Wea. Rev., 136, 2576–2591, https://doi.org/10.1175/2007MWR2154.1.

    Google Scholar 

  21. Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    Google Scholar 

  22. Hostetler, S. W., J. R. Alder, and A. M. Allan, 2011: Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users. U.S. Geological Survey Open-File Report 2011–1238, 64 pp.

  23. Hu, X. M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10 490–10 505, https://doi.org/10.1002/jgrd.50823.

    Google Scholar 

  24. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The kain-fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society, 165–170, https://doi.org/10.1007/978-1-935704-13-3_16.

  25. Kim, O.-Y., B. Wang, and S.-H. Shin, 2013: How do weather characteristics change in a warming climate? Climate Dyn., 41, 3261–3281, https://doi.org/10.1007/s00382-013-1795-8.

    Google Scholar 

  26. Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteo. Soc., 91, 363–376, https://doi.org/10.1175/2009BAMS2755.1.

    Google Scholar 

  27. Komurcu, M., K. A. Emanuel, M. Huber, and R. P. Acosta, 2018: High-resolution climate projections for the northeastern united states using dynamical downscaling at convection-permitting scales. Earth and Space Science, 5, 801–826, https://doi.org/10.1029/2018EA000426.

    Google Scholar 

  28. Kruk, M. C., K. R. Knapp, and D. H. Levinson, 2010: A technique for combining global tropical cyclone best track data. J. Atmos. Oceanic Technol., 27, 680–692, https://doi.org/10.1175/2009JTECHA1267.1.

    Google Scholar 

  29. Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.

    Google Scholar 

  30. Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791–2801, https://doi.org/10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2.

    Google Scholar 

  31. Laloyaux, P., and Coauthors, 2018: CERA-20C: A coupled reanalysis of the twentieth century. Journal of Advances in Modeling Earth Systems, 10, 1172–1195, https://doi.org/10.1029/2018MS001273.

    Google Scholar 

  32. Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32(4), 363–403, https://doi.org/10.1029/94RG01872.

    Google Scholar 

  33. Li, Y., and R. Toumi, 2018: Improved tropical cyclone intensity forecasts by assimilating coastal surface currents in an idealized study. Geophys. Res. Lett., 45, 10 019–10 026, https://doi.org/10.1029/2018GL079677.

    Google Scholar 

  34. Rockel, B., C. L. Castro, R. A. Pielke, H. von Storch, and G. Leoncini, 2008: Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. J. Geophys. Res., 113, D21107, https://doi.org/10.1029/2007JD009461.

    Google Scholar 

  35. Saha, S., and Coauthors, 2010: The ncep climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1.

    Google Scholar 

  36. Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    Google Scholar 

  37. Sandery, P. A., G. B. Brassington, A. Craig, and T. Pugh, 2010: Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the australian region. Mon. Wea. Rev., 138, 2074–2091, https://doi.org/10.1175/2010MWR3101.1.

    Google Scholar 

  38. Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    Google Scholar 

  39. Sippel, J. A., 2008: The Dynamics and Predictability of Tropical Cyclones. Doctoral Dissertation, Texas A&M University. [Available online from http://hdl.handle.net/1969.1/ETDTAMU-2008-12-141]

  40. Sippel, J. A., and F. Q. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 3440–3459, https://doi.org/10.1175/2008JAS2597.1.

    Google Scholar 

  41. Sugiura, N., T. Awaji, S. Masuda, T. Mochizuki, T. Toyoda, T. Miyama, H. Igarashi, and Y. Ishikawa, 2008: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res., 113, C10017, https://doi.org/10.1029/2008JC004741.

    Google Scholar 

  42. Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745–760, https://doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

    Google Scholar 

  43. Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307–2314, https://doi.org/10.1175/JCLI4074.1.

    Google Scholar 

  44. Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44(1–4), 43–61, https://doi.org/10.1007/BF01026810.

    Google Scholar 

  45. Warner, J. C., B. Armstrong, R. Y. He, and J. B. Zambon, 2010: Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    Google Scholar 

  46. Wu, X. R., W. Li, G. J. Han, S. Q. Zhang, and X. D. Wang, 2014: A compensatory approach of the fixed localization in EnKF. Mon. Wea. Rev., 142, 3713–3733, https://doi.org/10.1175/MWR-D-13-00369.1.

    Google Scholar 

  47. Xue, M., J. Schleif, F. Y. Kong, K. W. Thomas, Y. H. Wang, and K. F. Zhu, 2013: Track and intensity forecasting of hurricanes: Impact of convection-permitting resolution and global ensemble Kalman filter analysis on 2010 Atlantic season forecasts. Wea. Forecasting, 28, 1366–1384, https://doi.org/10.1175/WAF-D-12-00063.1.

    Google Scholar 

  48. Zhang, F. Q., Y. H. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38(15), L15810, https://doi.org/10.1029/2011GL048469.

    Google Scholar 

  49. Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135(12), 3541–3564, https://doi.org/10.1175/MWR3466.1.

    Google Scholar 

  50. Zhang, S., M. Zhao, S. J. Lin, X. Yang, and W. Anderson, 2014: Retrieval of tropical cyclone statistics with a high-resolution coupled model and data. Geophys. Res. Lett., 41, 652–660, https://doi.org/10.1002/2013GL058879.

    Google Scholar 

  51. Zhang, S., and Coauthors, 2015: Impact of having realistic tropical cyclone frequency on ocean heat content and transport forecasts in a high-resolution coupled model. Geophys. Res. Lett., 42, 5966–5973, https://doi.org/10.1002/2015GL064745.

    Google Scholar 

  52. Zhao, M., I. M. Held, S.J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 6653–6678, https://doi.org/10.1175/2009JCLI3049.1.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaoqing Zhang.

Additional information

Article Highlights

• Three sets of high-resolution coupled models with coupled data assimilation are used to study the predictability of tropical cyclone genesis.

• With coherent coupled initialization, high-resolution coupled models resolving mesoscale air-sea interactions can predict TC genesis a few days in advance.

• A high-resolution coupled model that better resolves local warm SSTs and weak wind shears that favor TC formation can improve the predictability of TC genesis.

Acknowledgements

We thank the two anonymous reviewers for their thorough examinations and useful and helpful comments on the early version of the manuscript. This research was supported by the National Key Research & Development Program of China (Grant Nos. 2017YFC1404100 and 2017YFC1404104) and the National Natural Science Foundation of China (Grant Nos. 41775100 and 41830964), as well as Shandong Province’s “Taishan” Scientist Project. Data used to produce the figures and analyses in this work are available at: https://pan.baidu.com/s/1hG5tMbJ3p7qOJLWPLDuh2Q (password: 25jz) or by sending a written request to the corresponding author (Shaoqing ZHANG, szhang@ouc.edu.cn). This research is also within the collaborative project between the Ocean University of China (OUC), Texas A&M University (TAMU) and the National Center for Atmospheric Research (NCAR) and completed through the International Laboratory for High Resolution Earth System Prediction (iHESP)—a collaboration among QNLM, TAMU and NCAR.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, S., Wu, L. et al. An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization. Adv. Atmos. Sci. 37, 939–950 (2020). https://doi.org/10.1007/s00376-020-9220-9

Download citation

Key words

  • high-resolution coupled model
  • tropical cyclone formation
  • predictability
  • TC genesis
  • coupled data assimilation

关键词

  • 高分辨率耦合模式
  • 动力降尺度耦合资料同化
  • 热带气旋成因
  • 热带气旋生成
  • 可预报性