Abstract
This study investigates the recent near-surface temperature trends over the Antarctic Peninsula. We make use of available surface observations, ECMWF’s ERA5 and its predecessor ERA-Interim, as well as numerical simulations, allowing us to contrast different data sources. We use hindcast simulations performed with Polar-WRF over the Antarctic Peninsula on a nested domain configuration at 45 km (PWRF-45) and 15 km (PWRF-15) spatial resolutions for the period 1991-2015. In addition, we include hindcast simulations of KNMI-RACMO21P obtained from the CORDEX-Antarctica domain (~50 km) for further comparisons. Results show that there is a marked windward warming trend except during summer. This windward warming trend is particularly notable in the autumn season and likely to be associated with the recent deepening of the Amundsen/Bellingshausen Sea low and warm advection towards the Antarctic Peninsula. On the other hand, an overall summer cooling is characterized by the strengthening of the Weddell Sea low as well as an anticyclonic trend over the Amundsen Sea accompanied by northward winds. The persistent cooling trend observed at the Larsen Ice Shelf station is not captured by ERA-Interim, whereas hindcast simulations indicate that there is a clear pattern of windward warming and leeward cooling. Furthermore, larger temporal correlations and lower differences exhibited by PWRF-15 illustrate the existence of the added value in the higher spatial resolution simulation.
摘要
本文分析了近期南极半岛上的近地面温度趋势,并利用现有的表面观测数据、欧洲中期天气预报中心(ECMWF)的ERA5和其前身ERA-Interim产品以及模式模拟数据,对不同的数据源进行了比较。我们使用极地WRF模式,以45公里(PWRF-45)和15公里(PWRF-15)空间分辨率的嵌套域配置进行了1991-2015年期间的后报试验。此外,我们还从CORDEX南极区域(约50km)获取了KNMI-RACMO21P的后报试验结果以做进一步的比较。结果表明,除夏季外其余季节均呈现明显的迎风增暖趋势,秋季尤为显著,这可能与近期阿蒙森-别林斯高晋海的低压加深及朝向南极半岛的暖平流有关,而夏季整体变冷的特征为威德尔海低压的加强及阿蒙森海上空的反气旋趋势并伴有北风。ERA-Interim没有捕获到拉森冰架站观测到的持续变冷趋势,而后报试验结果显示出明显的迎风增暖和背风变冷型态。此外,PWRF-15表现出更大的时间相关性和更低的差异,表明在较高空间分辨率的模拟中附加值的存在。
Article PDF
References
Agosta, C., C. Amory, C. Kittel, A. Orsi, V. Favier, and Coauthors, 2019: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere, 13(1), 281–296, https://doi.org/10.5194/tc-13-281-2019.
Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864.
Bozkurt, D., R. Rondanelli, J. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos., 123, 3871–3892, https://doi.org/10.1002/2017JD027796.
Bromwich, D. H., K. M. Hines, and L.-S. Bai, 2009: Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean. J. Geophys. Res., 114, D08122, https://doi.org/10.1029/2008JD010300.
Bromwich, D. H., J. P Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A.B. Wilson, 2013a: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 6, 139–145, https://doi.org/10.1038/ngeo1671.
Bromwich, D. H., F. O. Otieno, K. M. Hines, K. W. Manning, and E. Shilo, 2013b: Comprehensive evaluation of polar weather research and forecasting performance in the Antarctic. J. Geophys. Res., 118, 274–292, https://doi.org/10.1029/2012JD018139.
Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A.B. Wilson, 2014: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci., 7, 76, https://doi.org/10.1038/ngeo2016.
Cape, R. M., M. Vernet, M. Kahru, and G. Spreen, 2014: Polynya dynamics drive primary production in the Larsen A and B embayments following ice shelf collapse. J. Geophys. Res. Oceans, 119, 572–594, https://doi.org/10.1002/2013JC009441.
Cape, M. R., M. Vernet, P. Skvarca, S. Marinsek, M. Scambos, and E. Domack, 2015: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmospheres, 120, 11037–11057, https://doi.org/10.1002/2015JD023465.
Carrasco, J. F., 2013: Decadal changes in the near-surface air temperature in the western side of the Antarctic Peninsula. Atmospheric and Climate Sciences, 3(3), 275–281, https://doi.org/10.4236/acs.2013.33029.
Carrasco, J. F., 2018: Contextualising the 1997 warm event observed at Patriot Hills in the interior of West Antarctica. Polar Research, 37, 1–12, https://doi.org/10.1080/17518369.2018.1547041.
Clem, K. R., B. R. Lintner, A. J. Broccoli, and J.R. Miller, 2019: Role of the South Pacific convergence zone in West Antarctic decadal climate variability. Geophys. Res. Lett., https://doi.org/10.1029/2019GL082108.
Comiso, J. C., 2000: Bootstrap sea ice concentrations from NIMBUS-7 SMMR and DMSP SMM/I-SSM/S, Version 2, Subset used: January and July 2013. NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado.
Cook A. J., and D. G. Vaughan, 2010: Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere, 4, 77–98, https://doi.org/10.5194/tc-4-77-2010.
Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). [Available online from https://cds.climate.copernicus.eu/cdsapp#!/home]
Datta, R. T., M. Tedesco, X. Fettweis, C. Agosta, S. Lhermitte, J. T. M. Lenaerts, and N. Wever, 2019: The effect of Foehninduced surface melt on firn evolution over the northeast Antarctic Peninsula. Geophys. Res. Lett., 46, https://doi.org/10.1029/2018GL080845.
Deb, P., A. Orr, J. S. Hosking, T. Phillips, J. Turner, D. Bannister, J. O. Pope, and S. Colwell, 2016: An assessment of the Polar Weather Research and Forecasting (WRF) model representation of near-surface meteorological variables over West Antarctica. J. Geophys. Res. Atmos., 121, 1532–1548, https://doi.org/10.1002/2015JD024037.
Deb, P., A. Orr, D. H. Bromwich, J. P. Nicolas, J. Turner, and J.S. Hosking, 2018: Summer drivers of atmospheric variability affecting ice shelf thinning in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett., 45, 4124–4133, https://doi.org/10.1029/2018GL077092.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Royal Meteorol. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828.
Elvidge, A. D., I. A. Renfrew, J. C. King, A. Orr, T. A. Lachlan-Cope, M. Weeks, and Coauthors, 2015: Foehn jets over the Larsen C Ice Shelf, Antarctica. Quart. J. Royal Meteorol. Soc., 141, 698–713, https://doi.org/10.1002/qj.2382.
Fraiman, R., A. Justel, R. Liu, and P. Llop, 2014: Detecting trends in time series of functional data: A study of Antarctic climate change. The Canadian Journal of Statistics, 42, 1–13, https://doi.org/10.1002/cjs.11197.
Giorgi, F., C. Jones, and G.R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58, 175–183.
Gonzalez, S., S. Vasallo, C. Recio-Blitz, J. A. Guijarro, and J. Riesgo, 2018: Atmospheric pattern over the Antarctic Peninsula. J. Climate, 31, 3597–3607, https://doi.org/10.1175/JCLID-17-0598.1.
Gonzalez, S., and D. Fortuny, 2018: How robust are the Antarctic Peninsula trends? Antarctic Science, 30, 322–328, https://doi.org/10.1017/S0954102018000251.
Gossart, A., S. Helsen, J. Lenaerts, S. Vanden Broucke, N. van Lipzig, and N. Souverijns, 2019: An evaluation of surface climatology in state-of-the-art reanalyses over the Antarctic Ice Sheet. J. Climate, https://doi.org/10.1175/JCLI-D-19-0030.1.
Grell, G. A., and S. R. Freitas, 2013: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 13, 23845–23893, https://doi.org/10.5194/acpd-13-23845-2013.
Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter No. 147, 7.
Hines, K. M., and D. H. Bromwich, 2008: Development and testing of Polar WRF. Part I: Greenland ice sheet meteorology. Mon. Wea. Rev., 136, 1971–1989, https://doi.org/10.1175/2007MWR2112.1.
Hines, K. M., D. H. Bromwich, L. S. Bai, M. Barlage, and A.G. Slater, 2011: Development and testing of Polar WRF. Part III: Arctic land. J. Climate, 24, 26–48, https://doi.org/10.1175/2010JCLI3460.1.
Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E.J. Steig, 2019: West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci., https://doi.org/10.1038/s41561-019-0420-9.
Hosking, J. S., A. Orr, G. J. Marshall, J. Turner, and T. Phillips, 2013: The influence of the Amundsen-Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J. Climate, 26, 6633–6648, https://doi.org/10.1175/JCLI-D-12-00813.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W.D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Janjic, Z. I., 2002: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Off. Note 437, Natl. Cent. Environ. Predict., Camp Springs, Md, 61 pp.
Jones, J. M., and Coauthors, 2016: Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Climate Change, 6, 917–926, https://doi.org/10.1038/nclimate3103.
Jones, M. E., D. H. Bromwich, J. P. Nicolas, J. Carrasco, E. Plavcová, X. Zou, and S.-H. Wang, 2019: Sixty years of widespread warming in the southern mid- and high-latitudes (1957–2016). J. Climate, 32, 6875–6898, https://doi.org/10.1175/JCLI-D-18-0565.1.
King, J. C., and J. Turner, 2009: Antarctic meteorology and climatology. Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511524967.
King, J. C., A. Gadian, A. Kirchgaessner, P. Kuipers Munneke, T. A. Lachlan-Cope, A. Orr, C. Reijmer, M. R. van den Broeke, J. M. van Wessem, and M. Weeks, 2015: Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models. J. Geophys. Res.-Atmos., 120, 1335–1347, https://doi.org/10.1002/2014JD022604.
Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J.J. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observation. Bull. Amer. Meteorol. Soc., 93(10), 1519–1537, https://doi.org/10.1175/BAMS-D-11-00015.1.
Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713.
Listowski, C., and T. Lachlan-Cope, 2017: The microphysics of clouds over the Antarctic Peninsula-Part 2: Modelling aspects within Polar-WRF. Atmos. Chem. Phys., 17, 10195–10221, https://doi.org/10.5194/acp-17-10195-2017.
Marshall, G. J., A. Orr, N. P. M. van Lipzig, and J.C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic Peninsula summer temperatures. J. Climate., 19(20), 5388–5404, https://doi.org/10.1175/JCLI3844.1.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1.
Nicolas, J. P., A. M. Vogelmann, R. C. Scott, A. B. Wilson, M. P. Cadeddu, D. H. Bromwich, and Coauthors, 2017: January 2016 extensive summer melt in West Antarctica favoured by strong El Ninño. Nat. Comm., 8, 15799, https://doi.org/10.1038/ncomms15799.
Niu, G. Y., Z. L. Yang, K. E. Mitchell, and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.
Oliva, M., F. Navarro, F. Hrbacek, A. Hernandez, D. Nyvlt, P. Pereira, and Coauthors, 2017: Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Tot. Environ., 580, 210–223, https://doi.org/10.1016/j.scitotenv.2016.12.030.
Powers, J. G., K. W. Manning, D. H. Bromwich, J. J. Cassano, and A.M. Cayette, 2012: A decade of Antarctic science support through AMPS. Bull. Amer. Meteor. Soc., 93, 1699–1712, https://doi.org/10.1175/BAMS-D-11-00186.1.
Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111–121, https://doi.org/10.1175/BAMS-D-14-00018.1.
Rignot, E., G. Casassa, P. Gogineni, W. Krabill, A. Rivera, and R. Thomas, 2004: Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett., 31, L18401, https://doi.org/10.1029/2004GL020697.
Rondanelli, R., B. Hatchett, J. Rutllant, D. Bozkurt, and R. Garreaud, 2019: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica. Geophys. Res. Lett., 46(6), 3482–3491, https://doi.org/10.1029/2018GL081475.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. Duda, X.-Y. Huang, W. Wang, and J.G. Powers, 2008: A description of the Advanced Research WRF Version 3. NCAR Tech. Note, NCAR/TN-475 + STR, Nat. Cent. for Atmos. Res, Boulder, Colorado, 125 pp.
Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D.T. Shindell, 2009: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457, 459–462, https://doi.org/10.1038/nature07669.
Steinhoff, D. F., D. H. Bromwich, and A.J. Monaghan, 2014: Dynamics of the foehn mechanism in the McMurdo Dry Valleys of Antarctica from Polar WRF. Quart. J. Roy. Meteor. Soc., 139, 1615–1631, https://doi.org/10.1002/qj.2038.
Tetzner, D., L. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula-Ellsworth Land region, and its implications for ice core studies. Geosciences, 9(289), https://doi.org/10.3390/geosciences9070289.
Turner, J., and Coauthors, 2004: The SCAR READER project: Toward a high-quality database of mean Antarctic meteorological observations. J. Climate, 17, 2890–2898, https://doi.org/10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.
Turner, J., H. Lu, I. White, J. C. King, T. Phillips, J. S. Hosking, J. S., and Coauthors, 2016: Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411–415, https://doi.org/10.1038/nature18645.
van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosvelt, B. J. J. M. van den Hurk, G. Lenderink, and A.P. Siebesma, 2008: The KNMI regional atmospheric model RACMO version 2.1. KNMI Tech. Rep. 302, 43 pp.[Available online at bibliotheek.knmi.nl/knmipubTR/TR302.pdf]
van Wessem, J. M., C. H. Reijmer, M. Morlighem, J. Mouginot, E. Rignot, B. Medley, and Coauthors, 2014: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60, 761–770, https://doi.org/10.3189/2014JoG14J051.
van Wessem, J. M., C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, A. J. Cook, L. H. van Ulft, and E. van Meijgaard, 2015: Temperature and wind climate of the Antarctic Peninsula as simulated by a high-resolution regional atmospheric climate model. J. Climate, 28, 7306–7326, https://doi.org/10.1175/JCLI-D-15-0060.1.
Wilson, A. B., D. H. Bromwich, and K.M. Hines, 2012: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis Domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res., 117, D04107, https://doi.org/10.1029/2011JD016765.
Yang, Z. L., G. Y. Niu, K. E. Mitchell, F. Chen, M. B. Ek, M. Barlage, K. Manning, D. Niyogi, M. Tewari, and Y.L. Xia, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.
Zhang, C., and J. Zhan, 2018: Modeling study of foehn wind events in Antarctic Peninsula with WRF forced by CCSM. J. Meteor. Res., 32(6), 909–922, https://doi.org/10.1007/s13351-018-8067-9.
Zou, X., D. H. Bromwich, J. P. Nicolas, A. Montenegro, and S.H. Wang, 2019: West Antarctic surface melt event of January 2016 facilitated by föhn warming. Quart. J. Royal Meteorol. Soc., 145(719), 687–704, https://doi.org/10.1002/qj.3460.
Acknowledgments
This work was funded by FONDAPCONICYT (Grant No. 15110009). D. B. acknowledges support from CONICYT-PAI (Grant No. 77190080). This paper is Contribution Number 1588 of the Byrd Polar and Climate Research Center. The authors acknowledge two anonymous reviewers for their constructive comments that helped to improve the manuscript. DB acknowledges the Scientific Committee on Antarctic Research (SCAR) Expert Group on Operation Meteorology in the Antarctic (OPMet) for a partial funding award for the 14th Workshop on Antarctic Meteorology and Climate (WAMC) as well as the Year of Polar Prediction in the Southern Hemisphere (YOPP-SH) meeting in Charleston, SC, USA, between 25 and 28 June 2019. We thank David B. REUSCH (Department of Earth and Environmental Science, New Mexico Technology), Rodrigo Delgado URZÚA (Dirección General de Aeronáutica Civil, Chile), Kevin MANNING (National Center for Atmospheric Research, Boulder, Colorado), Andrew ORR (British Antarctic Survey) and Pranab DEB (Indian Institute of Technology) for useful discussions on the Polar-WRF simulations. We are grateful for data from the SCARREADER dataset and we wish to acknowledge ECMWF for ERAInterim and ERA5 data. The Polar-WRF simulations were performed within a project entitled “Simulaciones climáticas regionales para el continente Antártico y territorio insular Chileno” funded by the Chilean Ministry of Environment. This research was partially supported by the Basal Grant AFB 170001 and the supercomputing infrastructure of the NLHPC (ECM-02:Powered@ NLHPC). The authors appreciate the support of Amazon Web Services (AWS) for the grants PS_R_FY2019_Q1_CR2 & PS_R_ FY2019_Q2_CR2, which allowed us to execute the Polar-WRF simulations on the AWS cloud infrastructure. We thank Francisca MUÑOZ, Nancy VALDEBENITO and Mirko DEL HOYO at CR2 for post-processing of Polar-WRF simulations.
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights:
• Recent near-surface temperature trends over the Antarctic Peninsula are assessed using observations, reanalysis and numerical simulations.
• Observed trends show contrasts between summer and autumn. An annual warming (cooling) trend is notable at San Martin (Larsen Ice Shelf) station.
• Unlike the reanalysis, numerical simulations indicate a clear pattern of windward warming and leeward cooling at the annual time scale.
Electronic supplementary material
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm-ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bozkurt, D., Bromwich, D.H., Carrasco, J. et al. Recent Near-surface Temperature Trends in the Antarctic Peninsula from Observed, Reanalysis and Regional Climate Model Data. Adv. Atmos. Sci. 37, 477–493 (2020). https://doi.org/10.1007/s00376-020-9183-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-020-9183-x
Keywords
- dynamical downscaling
- cloud computing
- added value
- reanalysis
- Amundsen/Bellingshausen Sea
- Weddell Sea
- temperature trend