Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274–278, https://doi.org/10.1038/nature02101.
Google Scholar
Bethke, I., S. Outten, O. H. Otterå, E. Hawkins, S. Wagner, M. Sigl, and P. Thorne, 2017: Potential volcanic impacts on future climate variability. Nat. Clim. Change, 7, 799–805, https://doi.org/10.1038/nclimate3394.
Google Scholar
Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environmental Research Letters, 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.
Google Scholar
Dee, S. G., K. M. Cobb, J. Emile-Geay, T. R. Ault, R. L. Edwards, H. Cheng, and C. D. Charles, 2020: No consistent ENSO response to volcanic forcing over the last millennium. Science, 367, 1477–1481, https://doi.org/10.1126/science.aax2000.
Google Scholar
Ding, Y. N., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res., 119, 5622–5637, https://doi.org/10.1002/2013jc009780.
Google Scholar
Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 3134–3148, https://doi.org/10.1175/2007jcli1884.1.
Google Scholar
Fischer, E. M., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner, 2007: European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006g1027992.
Google Scholar
Gagné, M. È., M. C. Kirchmeier-Young, N. P. Gillett, and J. C. Fyfe, 2017: Arctic sea ice response to the eruptions of Agung, El Chichón, and Pinatubo. J. Geophys. Res., 122, 8071–8078, https://doi.org/10.1002/2017jd027038.
Google Scholar
Gao, C. C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008jd010239.
Google Scholar
Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environmental Research Letters, 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012.
Google Scholar
Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 8, 778, https://doi.org/10.1038/s41467-017-00755-6.
Google Scholar
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.
Google Scholar
Kravitz, B., and Coauthors, 2015: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. Geoscientific Model Development, 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015.
Google Scholar
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res., 124, 6307–6326, https://doi.org/10.1029/2018jd029522.
Google Scholar
Li, J. B., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change, 1, 114–118, https://doi.org/10.1038/nclimate1086.
Google Scholar
Lim, H.-G., S.-W. Yeh, J.-S. Kug, Y.-G. Park, J.-H. Park, R. Park, and C.-K. Song, 2016: Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: Results from the ERIK simulation. Climate Dyn., 46, 3725–3736, https://doi.org/10.1007/s00382-015-2799-3.
Google Scholar
Liu, F., C. Xing, L. Y. Sun, B. Wang, D. L. Chen, and J. Liu, 2018b: How do tropical, northern hemispheric, and southern hemispheric volcanic eruptions affect ENSO under different initial ocean conditions? Geophys Res. Lett., 45, 13 041–13 049, https://doi.org/10.1029/2018g1080315.
Google Scholar
Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 4, 24331, https://doi.org/10.1038/srep24331.
Google Scholar
Liu, F., J. B. Li, B. Wang, J. Liu, T. Li, G. Huang, and Z. Y. Wang, 2018a: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dyn., 40, 3799–3812, https://doi.org/10.1007/s00382-017-3846-z.
Google Scholar
Liu, F., T. L. Zhao, B. Wang, J. Liu, and W. B. Luo, 2018c: Different global precipitation responses to solar, volcanic, and greenhouse gas forcings. J. Geophys. Res., 123, 4060–4072, https://doi.org/10.1029/2017jd027391.
Google Scholar
Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 6024–6033, https://doi.org/10.1002/2015g1064751.
Google Scholar
Man, W. M., and T. J. Zhou, 2014: Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chinese Science Bulletin, 49, 4123–4129, https://doi.org/10.1007/s11434-014-0404-5.
Google Scholar
McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 2178–2191, https://doi.org/10.1175/2010jcli3990.1.
Google Scholar
Miller, G. H., and Coauthors, 2012: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011g1050168.
Google Scholar
Newhall, C. G., and S. Self, 1982: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res., 87, 1231–1238, https://doi.org/10.1029/JC087iC02p01231.
Google Scholar
Niemeier, U., and S. Tilmes, 2017: Sulfur injections for a cooler planet. Science, 357, 246–248, https://doi.org/10.1126/science.aan3317.
Google Scholar
Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 24, 5169–5182, https://doi.org/10.1175/jcli-d-12-00471.1.
Google Scholar
Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694, https://doi.org/10.1038/ngeo955.
Google Scholar
Perlwitz, J., and H.-F. Graf, 1995: The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J. Climate, 8, 2281–2295, https://doi.org/10.1175/1520-0442(1995)008<2281:tscbta>2.0.co;2.
Google Scholar
Polvani, L. M., A. Banerjee, and A. Schmidt, 2019: Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: Reconciling models and observations. Atmospheric Chemistry and Physics, 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019.
Google Scholar
Predybaylo, E., G. L. Stenchikov, A. T. Wittenberg, and F. R. Zeng, 2017: Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res., 122, 925–947, https://doi.org/10.1002/2016jd025796.
Google Scholar
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.
Google Scholar
Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054.
Google Scholar
Robock, A., 2002: Pinatubo eruption. The climatic aftermath. Science, 294, 1242–1244, https://doi.org/10.1126/science.1069903.
Google Scholar
Robock, A., and J. P. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 2405–2408, https://doi.org/10.1029/92g102627.
Google Scholar
Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22–22 994, https://doi.org/10.1029/93jd02553.
Google Scholar
Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008jd011222.
Google Scholar
Sear, C. B., P. M. Kelly, P. D. Jones, and C. M. Goodess, 1987: Global surface-temperature responses to major volcanic eruptions. Nature, 330, 365–367, https://doi.org/10.1038/330365a0.
Google Scholar
Self, S., M. R. Rampino, J. Zhao, and M. G. Katz, 1997: Volcanic aerosol perturbations and strong El Niño events: No general correlation. Geophys. Res. Lett., 24, 1247–1250, https://doi.org/10.1029/97g101127.
Google Scholar
Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2:500 years. Nature, 523, 543–549, https://doi.org/10.1038/nature14565.
Google Scholar
Slawinska, J., and A. Robock, 2018: Impact of volcanic eruptions on decadal to centennial fluctuations of arctic sea ice extent during the last millennium and on initiation of the little ice age. J. Climate, 31, 2145–2167, https://doi.org/10.1175/jcli-d-16-0498.1.
Google Scholar
Stenchikov, G., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, https://doi.org/10.1029/2002jd002090.
Google Scholar
Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 2907–2921, https://doi.org/10.1175/jcli-d-15-0239.1.
Google Scholar
Tilmes, S., and Coauthors, 2013: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (Geo-MIP). J. Geophys. Res., 118, 11 036–11 058, https://doi.org/10.1002/jgrd.50868.
Google Scholar
Tilmes, S., and Coauthors, 2019: Reaching 1.5°C and 2.0°C global surface temperature targets using stratospheric aerosol geoengineering. Earth System Dynamics, https://doi.org/10.5194/esd-2019-76.
Trenberth, K. E., and A. G. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007g1030524.
Google Scholar
Wang, T., D. Guo, Y. Q. Gao, H. Wang, F. Zheng, Y. Zhu, J. Miao, and Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2.
Google Scholar
Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543–562, https://doi.org/10.1175/2010jcli3878.1.
Google Scholar
Xing, C., F. Liu, B. Wang, D. L. Chen, J. Liu, and B. Liu, 2020: Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models. J. Climate, 33, 2407–2426, https://doi.org/10.1175/jcli-d-19-0186.1.
Google Scholar
Xu, Y. Y., and Coauthors, 2020: Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: Carbon Capture vs. Sulfur Injection? Earth System Dynamics, https://doi.org/10.5194/esd-2020-2.
Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2011: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, https://doi.org/10.1007/s00382-011-1167-1.
Google Scholar
Zanchettin, D., O. Bothe, H. F. Graf, S. J. Lorenz, J. Luterbacher, C. Timmreck, and J. H. Jungclaus, 2013: Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res., 118, 4090–4106, https://doi.org/10.1002/jgrd.50229.
Google Scholar
Zuo, M., T. J. Zhou, and W. M. Man, 2019: Wetter global arid regions driven by volcanic eruptions. J. Geophys. Res., 124, 13 648–13 662, https://doi.org/10.1029/2019jd031171.
Google Scholar