Could the Recent Taal Volcano Eruption Trigger an El Niño and Lead to Eurasian Warming?

An Erratum to this article was published on 09 October 2020

This article has been updated

Change history

  • 09 October 2020

    In the third column of the five row of Table 1, “120.4°W” should be “20.4°E”.

References

  1. Adams, J. B., M. E. Mann, and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274–278, https://doi.org/10.1038/nature02101.

    Google Scholar 

  2. Bethke, I., S. Outten, O. H. Otterå, E. Hawkins, S. Wagner, M. Sigl, and P. Thorne, 2017: Potential volcanic impacts on future climate variability. Nat. Clim. Change, 7, 799–805, https://doi.org/10.1038/nclimate3394.

    Google Scholar 

  3. Butler, A. H., L. M. Polvani, and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environmental Research Letters, 9, 024014, https://doi.org/10.1088/1748-9326/9/2/024014.

    Google Scholar 

  4. Dee, S. G., K. M. Cobb, J. Emile-Geay, T. R. Ault, R. L. Edwards, H. Cheng, and C. D. Charles, 2020: No consistent ENSO response to volcanic forcing over the last millennium. Science, 367, 1477–1481, https://doi.org/10.1126/science.aax2000.

    Google Scholar 

  5. Ding, Y. N., J. A. Carton, G. A. Chepurin, G. Stenchikov, A. Robock, L. T. Sentman, and J. P. Krasting, 2014: Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res., 119, 5622–5637, https://doi.org/10.1002/2013jc009780.

    Google Scholar 

  6. Emile-Geay, J., R. Seager, M. A. Cane, E. R. Cook, and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 3134–3148, https://doi.org/10.1175/2007jcli1884.1.

    Google Scholar 

  7. Fischer, E. M., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner, 2007: European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett., 34, L05707, https://doi.org/10.1029/2006g1027992.

    Google Scholar 

  8. Gagné, M. È., M. C. Kirchmeier-Young, N. P. Gillett, and J. C. Fyfe, 2017: Arctic sea ice response to the eruptions of Agung, El Chichón, and Pinatubo. J. Geophys. Res., 122, 8071–8078, https://doi.org/10.1002/2017jd027038.

    Google Scholar 

  9. Gao, C. C., A. Robock, and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008jd010239.

    Google Scholar 

  10. Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environmental Research Letters, 9, 104012, https://doi.org/10.1088/1748-9326/9/10/104012.

    Google Scholar 

  11. Khodri, M., and Coauthors, 2017: Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nature Communications, 8, 778, https://doi.org/10.1038/s41467-017-00755-6.

    Google Scholar 

  12. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.

    Google Scholar 

  13. Kravitz, B., and Coauthors, 2015: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. Geoscientific Model Development, 8, 3379–3392, https://doi.org/10.5194/gmd-8-3379-2015.

    Google Scholar 

  14. Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss, 2019: Improvements in the GISTEMP uncertainty model. J. Geophys. Res., 124, 6307–6326, https://doi.org/10.1029/2018jd029522.

    Google Scholar 

  15. Li, J. B., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng, 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change, 1, 114–118, https://doi.org/10.1038/nclimate1086.

    Google Scholar 

  16. Lim, H.-G., S.-W. Yeh, J.-S. Kug, Y.-G. Park, J.-H. Park, R. Park, and C.-K. Song, 2016: Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: Results from the ERIK simulation. Climate Dyn., 46, 3725–3736, https://doi.org/10.1007/s00382-015-2799-3.

    Google Scholar 

  17. Liu, F., C. Xing, L. Y. Sun, B. Wang, D. L. Chen, and J. Liu, 2018b: How do tropical, northern hemispheric, and southern hemispheric volcanic eruptions affect ENSO under different initial ocean conditions? Geophys Res. Lett., 45, 13 041–13 049, https://doi.org/10.1029/2018g1080315.

    Google Scholar 

  18. Liu, F., J. Chai, B. Wang, J. Liu, X. Zhang, and Z. Y. Wang, 2016: Global monsoon precipitation responses to large volcanic eruptions. Scientific Reports, 4, 24331, https://doi.org/10.1038/srep24331.

    Google Scholar 

  19. Liu, F., J. B. Li, B. Wang, J. Liu, T. Li, G. Huang, and Z. Y. Wang, 2018a: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dyn., 40, 3799–3812, https://doi.org/10.1007/s00382-017-3846-z.

    Google Scholar 

  20. Liu, F., T. L. Zhao, B. Wang, J. Liu, and W. B. Luo, 2018c: Different global precipitation responses to solar, volcanic, and greenhouse gas forcings. J. Geophys. Res., 123, 4060–4072, https://doi.org/10.1029/2017jd027391.

    Google Scholar 

  21. Maher, N., S. McGregor, M. H. England, and A. Sen Gupta, 2015: Effects of volcanism on tropical variability. Geophys. Res. Lett., 42, 6024–6033, https://doi.org/10.1002/2015g1064751.

    Google Scholar 

  22. Man, W. M., and T. J. Zhou, 2014: Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chinese Science Bulletin, 49, 4123–4129, https://doi.org/10.1007/s11434-014-0404-5.

    Google Scholar 

  23. McGregor, S., and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 2178–2191, https://doi.org/10.1175/2010jcli3990.1.

    Google Scholar 

  24. Miller, G. H., and Coauthors, 2012: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011g1050168.

    Google Scholar 

  25. Newhall, C. G., and S. Self, 1982: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res., 87, 1231–1238, https://doi.org/10.1029/JC087iC02p01231.

    Google Scholar 

  26. Niemeier, U., and S. Tilmes, 2017: Sulfur injections for a cooler planet. Science, 357, 246–248, https://doi.org/10.1126/science.aan3317.

    Google Scholar 

  27. Ohba, M., H. Shiogama, T. Yokohata, and M. Watanabe, 2013: Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Climate, 24, 5169–5182, https://doi.org/10.1175/jcli-d-12-00471.1.

    Google Scholar 

  28. Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694, https://doi.org/10.1038/ngeo955.

    Google Scholar 

  29. Perlwitz, J., and H.-F. Graf, 1995: The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J. Climate, 8, 2281–2295, https://doi.org/10.1175/1520-0442(1995)008<2281:tscbta>2.0.co;2.

    Google Scholar 

  30. Polvani, L. M., A. Banerjee, and A. Schmidt, 2019: Northern Hemisphere continental winter warming following the 1991 Mt. Pinatubo eruption: Reconciling models and observations. Atmospheric Chemistry and Physics, 19, 6351–6366, https://doi.org/10.5194/acp-19-6351-2019.

    Google Scholar 

  31. Predybaylo, E., G. L. Stenchikov, A. T. Wittenberg, and F. R. Zeng, 2017: Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res., 122, 925–947, https://doi.org/10.1002/2016jd025796.

    Google Scholar 

  32. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    Google Scholar 

  33. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, https://doi.org/10.1029/1998RG000054.

    Google Scholar 

  34. Robock, A., 2002: Pinatubo eruption. The climatic aftermath. Science, 294, 1242–1244, https://doi.org/10.1126/science.1069903.

    Google Scholar 

  35. Robock, A., and J. P. Mao, 1992: Winter warming from large volcanic eruptions. Geophys. Res. Lett., 19, 2405–2408, https://doi.org/10.1029/92g102627.

    Google Scholar 

  36. Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22–22 994, https://doi.org/10.1029/93jd02553.

    Google Scholar 

  37. Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, https://doi.org/10.1029/2008jd011222.

    Google Scholar 

  38. Sear, C. B., P. M. Kelly, P. D. Jones, and C. M. Goodess, 1987: Global surface-temperature responses to major volcanic eruptions. Nature, 330, 365–367, https://doi.org/10.1038/330365a0.

    Google Scholar 

  39. Self, S., M. R. Rampino, J. Zhao, and M. G. Katz, 1997: Volcanic aerosol perturbations and strong El Niño events: No general correlation. Geophys. Res. Lett., 24, 1247–1250, https://doi.org/10.1029/97g101127.

    Google Scholar 

  40. Sigl, M., and Coauthors, 2015: Timing and climate forcing of volcanic eruptions for the past 2:500 years. Nature, 523, 543–549, https://doi.org/10.1038/nature14565.

    Google Scholar 

  41. Slawinska, J., and A. Robock, 2018: Impact of volcanic eruptions on decadal to centennial fluctuations of arctic sea ice extent during the last millennium and on initiation of the little ice age. J. Climate, 31, 2145–2167, https://doi.org/10.1175/jcli-d-16-0498.1.

    Google Scholar 

  42. Stenchikov, G., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, https://doi.org/10.1029/2002jd002090.

    Google Scholar 

  43. Stevenson, S., B. Otto-Bliesner, J. Fasullo, and E. Brady, 2016: “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Climate, 29, 2907–2921, https://doi.org/10.1175/jcli-d-15-0239.1.

    Google Scholar 

  44. Tilmes, S., and Coauthors, 2013: The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (Geo-MIP). J. Geophys. Res., 118, 11 036–11 058, https://doi.org/10.1002/jgrd.50868.

    Google Scholar 

  45. Tilmes, S., and Coauthors, 2019: Reaching 1.5°C and 2.0°C global surface temperature targets using stratospheric aerosol geoengineering. Earth System Dynamics, https://doi.org/10.5194/esd-2019-76.

  46. Trenberth, K. E., and A. G. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, https://doi.org/10.1029/2007g1030524.

    Google Scholar 

  47. Wang, T., D. Guo, Y. Q. Gao, H. Wang, F. Zheng, Y. Zhu, J. Miao, and Y. Hu, 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn., 51, 2433–2453, https://doi.org/10.1007/s00382-017-4021-2.

    Google Scholar 

  48. Watanabe, M., M. Chikira, Y. Imada, and M. Kimoto, 2011: Convective control of ENSO simulated in MIROC. J. Climate, 24, 543–562, https://doi.org/10.1175/2010jcli3878.1.

    Google Scholar 

  49. Xing, C., F. Liu, B. Wang, D. L. Chen, J. Liu, and B. Liu, 2020: Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models. J. Climate, 33, 2407–2426, https://doi.org/10.1175/jcli-d-19-0186.1.

    Google Scholar 

  50. Xu, Y. Y., and Coauthors, 2020: Climate engineering to mitigate the projected 21st-century terrestrial drying of the Americas: Carbon Capture vs. Sulfur Injection? Earth System Dynamics, https://doi.org/10.5194/esd-2020-2.

  51. Zanchettin, D., C. Timmreck, H.-F. Graf, A. Rubino, S. Lorenz, K. Lohmann, K. Krüger, and J. H. Jungclaus, 2011: Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419–444, https://doi.org/10.1007/s00382-011-1167-1.

    Google Scholar 

  52. Zanchettin, D., O. Bothe, H. F. Graf, S. J. Lorenz, J. Luterbacher, C. Timmreck, and J. H. Jungclaus, 2013: Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res., 118, 4090–4106, https://doi.org/10.1002/jgrd.50229.

    Google Scholar 

  53. Zuo, M., T. J. Zhou, and W. M. Man, 2019: Wetter global arid regions driven by volcanic eruptions. J. Geophys. Res., 124, 13 648–13 662, https://doi.org/10.1029/2019jd031171.

    Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Natural Science Foundation of China (Grant Nos. 41975107 and 41971108). We would like to thank Mr. Faxin CHEN for providing the photo shown in Fig. 1a. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model outputs. This paper is ESMC Contribution No. 306.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xing, C., Li, J. et al. Could the Recent Taal Volcano Eruption Trigger an El Niño and Lead to Eurasian Warming?. Adv. Atmos. Sci. 37, 663–670 (2020). https://doi.org/10.1007/s00376-020-2041-z

Download citation