Allen, M., B. B. B. Booth, D. J. Frame, J. M. Gregory, J. A. Kettleborough, L. A. Smith, D. A. Stainforth, and P. A. Stott, 2004: Observational constraints on future climate: Distinguishing robust from model-dependent statements of uncertainty in climate forecasting. Proc. IPCC Workshop on Communicating Uncertainty and Risk, Vol. 11, Maynooth, Ireland, 14 pp.
Google Scholar
Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332(6026), 220–224, https://doi.org/10.1126/science.1201224.
Article
Google Scholar
Chai, R. F., S. L. Sun, H. S. Chen, and S. J. Zhou, 2018: Changes in reference evapotranspiration over China during 1960-2012: Attributions and relationships with atmospheric circulation. Hydrological Processes, 32(19), 3032–3048, https://doi.org/10.1002/hyp.13252.
Article
Google Scholar
Chen, H. P., J. Q. Sun, W. Q. Lin, and H. W. Xu, 2020: Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 65(17), 1415–1418, https://doi.org/10.1016/j.scib.2020.05.015.
Article
Google Scholar
Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1029–1136.
Google Scholar
Ding, T., Qian, W., and Yan, Z., 2010: Changes in hot days and heat waves in China during 1961-2007. International Journal of Climatology, 30(10), 1452–1462, https://doi.org/10.1002/joc.1989.
Article
Google Scholar
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Article
Google Scholar
Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 20(13), 7829–7842, https://doi.org/10.5194/acp-20-7829-2020.
Article
Google Scholar
Fu, Y. H., R. Y. Lu, and D. Guo, 2018: Changes in surface air temperature over China under the 1.5°C and 2.0°C global warming targets. Advances in Climate Change Research, 9(2), 112–119, https://doi.org/10.1016/j.accre.2017.12.001.
Article
Google Scholar
Hu, T., Y. Sun, and X. B. Zhang, 2017: Temperature and precipitation projection at 1.5 and 2°C increase in global mean temperature. Chinese Science Bulletin, 62(26), 3098–3111, https://doi.org/10.1360/N972016-01234.(inChinesewithEnglishabstract). (in Chinese with English abstract)
Article
Google Scholar
Huang, J. P., H. P. Yu, A. G. Dai, Y. Wei, and L. T. Kang, 2017: Drylands face potential threat under 2°C global warming target. Nature Climate Change, 7(6), 417–422, https://doi.org/10.1038/nclimate3275.
Article
Google Scholar
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, 1535 pp.
Google Scholar
Jiang, J., T. J. Zhou, X. L. Chen, and L. X. Zhang, 2020: Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters, 15(5), 054009, https://doi.org/10.1088/1748-9326/ab7d03/meta.
Article
Google Scholar
Jiang, T., and Coauthors, 2017: National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 13(2), 128–137, https://doi.org/10.12006/j.issn.1673-1719.2016.249. (in Chinese with English abstract)
Google Scholar
Jones, B., and B. C. O'Neill, 2016: Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environmental Research Letters, 11, 084003, https://doi.org/10.1088/1748-9326/11/8/084003.
Article
Google Scholar
Jones, B., and B. C. O'Neill, 2020: Global one-eighth degree population base year and projection grids based on the shared socioeconomic pathways, revision 01. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, https://doi.org/10.7927/m30p-j498.
Google Scholar
King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nature Climate Change, 7(6), 412–416, https://doi.org/10.1038/nclimate3296.
Article
Google Scholar
Li, D. H., T. J. Zhou, L. W. Zou, W. X. Zhang, and L. X. Zhang, 2018: Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophysical Research Letters, 45, 1541–1550, https://doi.org/10.1002/2017gl076753.
Article
Google Scholar
Li, X. Y., and Coauthors, 2019: Effects of forest fires on the permafrost environment in the northern Da Xing'anling (Hinggan) mountains, Northeast China. Permafrost and Periglacial Processes, 30(3), 163–177, https://doi.org/10.1002/ppp.2001.
Article
Google Scholar
Liang, X. Z., and Coauthors, 2019: CWRF performance at downscaling China climate characteristics. Climate Dynamics, 52(3-4), 2159–2184, https://doi.org/10.1007/s00382-018-4257-5.
Article
Google Scholar
Lin, L., Z. L. Wang, Y. Y. Xu, X. Y. Zhang, H. Zhang, and W. J. Dong, 2018: Additional intensification of seasonal heat and flooding extreme over China in a 2°C warmer world compared to 1.5°C. Earth's Future, 6, 968–978, https://doi.org/10.1029/2018EF000862.
Article
Google Scholar
Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997, https://doi.org/10.1126/science.1098704.
Article
Google Scholar
Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nature Climate Change, 7(7), 501–506, https://doi.org/10.1038/nclimate3322.
Article
Google Scholar
Nangombe, S., T. J. Zhou, W. X. Zhang, B. Wu, S. Hu, L. W. Zou, and D. H. Li, 2018: Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nature Climate Change, 8, 375–380, https://doi.org/10.1038/s41558-018-0145-6.
Article
Google Scholar
O'Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.
Article
Google Scholar
Robine, J. M., S. L. K. Cheung, S. Le Roy, H. Van Oyen, C. Griffiths, J.-P. Michel, and F. R. Herrmann, 2008: Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178, https://doi.org/10.1016/j.crvi.2007.12.001.
Article
Google Scholar
Samset, B. H., M. Sand, C. J. Smith, S. E. Bauer, P. M. Forster, J. S. Fuglestvedt, S. Osprey, and C.-F. Schleussner, 2018: Climate impacts from a removal of anthropogenic aerosol emissions. Geophysical Research Letters, 45, 1020–1029, https://doi.org/10.1002/2017GL076079.
Article
Google Scholar
Sanderson, B. M., and Coauthors, 2017: Community climate simulations to assess avoided impacts in 1.5°C and 2°C futures. Earth System Dynamics, 8(3), 827–847, https://doi.org/10.5194/esd-8-827-2017.
Article
Google Scholar
Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529(7587), 477–483, https://doi.org/10.1038/nature16542.
Article
Google Scholar
Shi, C., Z. H. Jiang, W. L. Chen, and L Li, 2018a: Changes in temperature extremes over China under 1.5°C and 2°C global warming targets. Advances in Climate Change Research, 9(2), 120–129, https://doi.org/10.1016/j.accre.2017.11.003.
Article
Google Scholar
Shi, Y., D. F. Zhang, Y. Xu, and B.-T. Zhou, 2018b: Changes of heating and cooling degree days over China in response to global warming of 1.5°C, 2°C, 3°C and 4°C. Advances in Climate Change Research, 9, 192–200, https://doi.org/10.1016/j.accre.2018.06.003.
Article
Google Scholar
Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118(3-4), 811–825, https://doi.org/10.1007/s10584-012-0659-2.
Article
Google Scholar
Su, B. D., and Coauthors, 2018: Drought losses in China might double between the 1.5°C and 2.0°C warming. Proceedings of the National Academy of Sciences of the United States of America, 115, 10600–10605, https://doi.org/10.1073/pnas.1802129115.
Article
Google Scholar
Tao, F., and Zhang, Z., 2013: Climate change, wheat productivity and water use in the North China Plain: A new superensemble-based probabilistic projection. Agricultural and Forest Meteorology, 170, 146–165, https://doi.org/10.1016/j.agrformet.2011.10.003.
Article
Google Scholar
The Third National Assessment Report on Climate Change, 2015: The Third National Assessment Report on Climate Change. Science Press, Beijing. 280 pp. (in Chinese)
UNFCCC, 2015: Adoption of the Paris Agreement. Proposal by the President. Report No. Proposal by the President. FCCC/CP/2015/L.9/Rev.1. [Available online from https://unfccc.int/sites/default/files/resource/docs/2015/cop21/eng/l09r01.pdf].
Wang, H. L., Y. T. Gan, R. Y. Wang, J.Y. Niu, H. Zhao, Q.G. Yang, and G.C. Li, 2008: Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agricultural and Forest Meteorology, 148(8-9), 1242–1251, https://doi.org/10.1016/j.agrformet.2008.03.003.
Article
Google Scholar
Wang, X. X., D. B. Jiang, and X. M. Lang, 2018: Climate change of 4°C global warming above pre-industrial levels. Adv. Atmos. Sci., 35, 757–770, https://doi.org/10.1007/s00376-018-7160-4.
Article
Google Scholar
Weber, T., A. Haensler, D. Rechid, S. Pfeifer, B. Eggert, and D. Jacob, 2018: Analyzing regional climate change in Africa in a 1.5°C, 2°C and 3°C global warming world. Earth's Future, 6, 643–655, https://doi.org/10.1002/2017EF000714.
Article
Google Scholar
Wilbanks, T., and Coauthors, 2012: Climate Change and Infrastructure, Urban Systems, and Vulnerabilities: Technical Report for the U.S. Department of Energy in Support of the National Climate Assessment, 29 February 2012. [Available from https://www.esd.ornl.gov/eess/Infrastructure.pdf]
Google Scholar
World Meteorological Association, 2020: WMO Statement on the State of the Global Climate in 2019. WMO. 44 pp.
Google Scholar
Xu, Y., B. T. Zhou, J. Wu, Z. Y. Han, Y. X. Zhang, and J. Wu, 2017: Asian climate change under 1.5°C-4°C warming targets. Advances in Climate Change Research, 8, 99–107, https://doi.org/10.1016/j.accre.2017.05.004.
Article
Google Scholar
Yang, X. Y., G. Zeng, G. W. Zhang, V. Iyakaremye, and Y. Xu, 2020: Future projections of winter cold surge paths over East Asia from CMIP6 models. International Journal of Climatology, https://doi.org/10.1002/joc.6797.
Google Scholar
Yang, Y., J. P. Tang, S. Y. Wang, and G. Liu, 2018: Differential impacts of 1.5°C and 2°C warming on extreme events over China using statistically downscaled and bias-corrected CESM low-warming experiment. Geophysical Research Letters, 45(18), 9852–9860, https://doi.org/10.1029/2018gl079272.
Article
Google Scholar
Yu, R., P. M. Zhai, and Y. Y. Lu, 2018: Implications of differential effects between 1.5°C and 2°C global warming on temperature and precipitation extremes in China's urban agglomerations. International Journal of Climatology, 38, 2374–2385, https://doi.org/10.1002/joc.5340.
Article
Google Scholar
Yu, S., and Coauthors, 2019: Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 208, 1219–1225, https://doi.org/10.1016/j.jclepro.2018.10.067.
Article
Google Scholar
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.
Article
Google Scholar
Zhang, G. W., G. Zeng, C. Li, and X. Y. Yang, 2020a: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dynamics, 54(5), 3003–3020, https://doi.org/10.1007/s00382-020-05155-z.
Article
Google Scholar
Zhang, G. W., G. Zeng, V. Iyakaremye, and Q.-L. You, 2020b: Regional changes in extreme heat events in China under stabilized 1.5°C and 2.0°C global warming. Advances in Climate Change Research, 11(3), 198–209, https://doi.org/10.1016/j.accre.2020.08.003.
Article
Google Scholar
Zhao, S. Y., T. J. Zhou, and X. L. Chen, 2020: Consistency of extreme temperature changes in China under a historical half-degree warming increment across different reanalysis and observational datasets. Climate Dynamics, 54(3-4), 2465–2479, https://doi.org/10.1007/s00382-020-05128-2.
Article
Google Scholar
Zhou, T. J., N. Sun, W. X. Zhang, X. L. Chen, D. D. Peng, D. H. Li, L. W. Ren, and M. ZUO, 2018: When and how will the Millennium Silk Road witness 1.5°C and 2°C warmer worlds? Atmospheric and Oceanic Science Letters, 11(2), 180–188, https://doi.org/10.1080/16742834.2018.1440134.
Article
Google Scholar
Zhou, T. J., and Coauthors, 2020: Development of climate and earth system models in China: Past achievements and new CMIP6 results. Journal of Meteorological Research, 34(1), 1–19, https://doi.org/10.1007/s13351-020-9164-0.
Article
Google Scholar
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37, 1119–1132, https://doi.org/10.1007/s00376-020-9289-1.
Article
Google Scholar