Skip to main content

Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations

Abstract

The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation. The rates of change in future precipitation extremes are quantified with changes in surface air temperature. Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model, RegCM4, and 17 global climate models that participated in CMIP5. First, we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period (RF: 1982–2001). The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes, as well as those based on observations: OBS and XPP. Precipitation extremes over four subregions in China are predicted to increase in the mid-future (MF: 2039–58) and far-future (FF: 2079–98) relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean. The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058, and the RCM results show higher interannual variability relative to that of the CMIP5 models. Then, we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature. Finally, based on the water vapor equation, changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity (significant at the p < 0.1 level).

摘 要

气温升高增强大气的持水能力,进而影响降水,特别是极端降水发生。本文利用区域气候模式RegCM4的6套模拟结果及17个参与CMIP5的模式结果,研究了中国21世纪极端降水变化。首先,我们评估了RegCM4及采用的17个CMIP5模式对中国历史时期(RF: 1982-2001)极端降水的模拟能力。跟观测相比,RegCM4和CMIP5模式都能合理模拟极端降水的空间格局。RegCM4模拟结果及CMIP5多模式集合结果得到的中国四个子区域上极端降水在21时期中叶(MF: 2039–58)及末期(FF: 2079–98)均高于历史时期,CMIP5模式模拟的中国极端降水从2008年到2058年呈增长趋势。相对于CMIP5模式结果,RegCM4模拟的极端降水有更高年际变率。其次,我们研究了气候变化下21世纪中叶及末期极端降水的变率,如21世纪中叶,华南地区气温每升高1oC,极端降水事件R95p相对于历史时期增加3.45%。最后,基于水汽方程,我们发现21中叶及末期的中国极端降水变化与大气垂直风速变化和地面比湿变化的乘积呈正相关关系。

This is a preview of subscription content, access via your institution.

References

  1. Azad, R., and A. Sorteberg, 2017: Extreme daily precipitation in coastal western Norway and the link to atmospheric rivers. J. Geophys. Res., 122, 2080–2095, https://doi.org/10.1002/2016JD025615.

    Article  Google Scholar 

  2. Bao, J. W., S. C. Sherwood, L. V. Alexander, and J. P. Evans, 2017: Future increases in extreme precipitation exceed observed scaling rates. Nature Climate Change, 7, 128–132, https://doi.org/10.1038/nclimate3201.

    Article  Google Scholar 

  3. Chen, H. P., and J. Q. Sun, 2017: Contribution of human influence to increased daily precipitation extremes over China. Geophys. Res. Lett., 44, 2436–2444, https://doi.org/10.1002/2016GL072439.

    Article  Google Scholar 

  4. Chen, H. P., J. Q. Sun, and H. X. Li, 2020: Increased population exposure to precipitation extremes under future warmer climates. Environmental Research Letters, 15, 034048, https://doi.org/10.1088/1748-9326/ab751f.

    Article  Google Scholar 

  5. Chen, X. Y., X. B. Zhang, J. A. Church, C. S. Watson, M. A. King, D. Monselesan, B. Legresy, and C. Harig, 2017: The increasing rate of global mean sea-level rise during 1993–2014. Nature Climate Change, 7, 492–495, https://doi.org/10.1038/nclimate3325.

    Article  Google Scholar 

  6. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. No. NCAR/TN-387+STR, https://doi.org/10.5065/D67W6959.

  7. Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881–4886, https://doi.org/10.1073/pnas.1618082114.

    Article  Google Scholar 

  8. Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O’Gorman, and N. Maher, 2016: More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6, 508–513, https://doi.org/10.1038/nclimate2941.

    Article  Google Scholar 

  9. Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res., 118, 2098–2118, https://doi.org/10.1002/jgrd.50150.

    Article  Google Scholar 

  10. Dong, L., L. R. Leung, J. Lu, and Y. Gao, 2019: Contributions of extreme and non-extreme precipitation to california precipitation seasonality changes under warming. Geophys. Res. Lett., 46, 13 470–13 478, https://doi.org/10.1029/2019GL084225.

    Article  Google Scholar 

  11. Dong, S. Y., Y. Sun, and C. Li, 2020: Detection of human influence on precipitation extremes in Asia. J. Climate, 33, 5293–5304, https://doi.org/10.1175/JCLI-D-19-0371.1.

    Article  Google Scholar 

  12. Emanuel, K. A., and M. Živkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    Article  Google Scholar 

  13. Fischer, E. M., and R. Knutti, 2016: Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 6, 986–991, https://doi.org/10.1038/nclimate3110.

    Article  Google Scholar 

  14. Franzke, C., 2012: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Climate, 25, 4172–4183, https://doi.org/10.1175/JCLI-D-11-00293.1.

    Article  Google Scholar 

  15. Gao, S. B., 2020: Dynamical downscaling of surface air temperature and precipitation using RegCM4 and WRF over China. Climate Dyn., 55, 1283–1302, https://doi.org/10.1007/s00382-020-05326-y.

    Article  Google Scholar 

  16. Gao, X. J., Y. Shi, Z. Y. Han, M. L. Wang, J. Wu, D. F. Zhang, Y. Xu, and F. Giorgi, 2017: Performance of RegCM4 over major river basins in China. Adv. Atmos. Sci., 34, 441–455, https://doi.org/10.1007/s00376-016-6179-7.

    Article  Google Scholar 

  17. Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7–29, https://doi.org/10.3354/cr01018.

    Article  Google Scholar 

  18. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    Article  Google Scholar 

  19. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+STR, 121 pp, https://doi.org/10.5065/D60Z716B.

  20. Gu, H. H., Z. B. Yu, W. R. Peltier, and X. Y. Wang, 2020: Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau. Climate Dyn., 54, 3781–3801, https://doi.org/10.1007/s00382-020-05205-6.

    Article  Google Scholar 

  21. Guo, J. P., and Coauthors, 2020: The response of warm-season precipitation extremes in China to global warming: An observational perspective from radiosonde measurements. Climate Dyn., 54, 3977–3989, https://doi.org/10.1007/s00382-020-05216-3.

    Article  Google Scholar 

  22. Herold, N., A. Behrangi, and L. V. Alexander, 2017: Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res., 122, 668–681, https://doi.org/10.1022/2016JD025842.

    Article  Google Scholar 

  23. Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454, 903–995, https://doi.org/10.1098/rspa.1998.0193.

    Article  Google Scholar 

  24. Huang, P., S. P. Xie, K. M. Hu, G. Huang, and R. H. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nature Geoscience, 6, 357–361, https://doi.org/10.1038/ngeo1792.

    Article  Google Scholar 

  25. IPCC, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. C. B. Field et al., Eds., Cambridge University Press, 582 pp.

  26. Ji, F., Z. H. Wu, J. P. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nature Climate Change, 4, 462–466, https://doi.org/10.1038/nclimate2223.

    Article  Google Scholar 

  27. Karl, T. R., and D. R. Easterling, 1999: Climate extremes: Selected review and future research directions. Climatic Change, 42, 309–325, https://doi.org/10.1023/A:1005436904097.

    Article  Google Scholar 

  28. Kim, T., J. Y. Shin, S. Kim, and J. H. Heo, 2018: Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. J. Hydrol., 557, 726–739, https://doi.org/10.1016/j.jhydrol.2017.12.069.

    Article  Google Scholar 

  29. King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nature Climate Change, 7, 412–416, https://doi.org/10.1038/nclimate3296.

    Article  Google Scholar 

  30. King, A. D., N. P. Klingaman, L. V. Alexander, M. G. Donat, N. C. Jourdain, and P. Maher, 2014: Extreme rainfall variability in Australia: Patterns, drivers, and predictability. J. Climate, 27, 6035–6050, https://doi.org/10.1175/JCLI-D-13-00715.1.

    Article  Google Scholar 

  31. Lee, S. S., J. Y. Moon, B. Wang, and H. J. Kim, 2017: Subseasonal prediction of extreme precipitation over Asia: Boreal summer intraseasonal oscillation perspective. J. Climate, 30, 2849–2865, https://doi.org/10.1175/JCLI-D-16-0206.1.

    Article  Google Scholar 

  32. Lei, Y. B., Y. L. Zhu, B. Wang, T. D. Yao, K. Yang, X. W. Zhang, J. Q. Zhai, and N. Ma, 2019: Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Nino. Geophys. Res. Lett., 46, 5889–5898, https://doi.org/10.1029/2019GL081946.

    Article  Google Scholar 

  33. Li, B. F., Y. N. Chen, Z. S. Chen, H. G. Xiong, and L. S. Lian, 2016a: Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmospheric Research, 167, 275–284, https://doi.org/10.1016/j.atmosres.2015.08.017.

    Article  Google Scholar 

  34. Li, J., and B. Wang, 2018: Predictability of summer extreme precipitation days over eastern China. Climate Dyn., 51, 4543–4554, https://doi.org/10.1007/s00382-017-3848-x.

    Article  Google Scholar 

  35. Li, W., Z. H. Jiang, J. J. Xu, and L. Li, 2016b: Extreme precipitation indices over China in CMIP5 models. Part II: Probabilistic projection. J. Climate, 29, 8989–9004, https://doi.org/10.1175/JCLI-D-16-0377.1.

    Article  Google Scholar 

  36. Li, X., Q. L. You, G. Y. Ren, S. Y. Wang, Y. Q. Zhang, J. L. Yang, and G. F. Zheng, 2019a: Concurrent droughts and hot extremes in Northwest China from 1961 to 2017. International Journal of Climatology, 39, 2186–2196, https://doi.org/10.1002/joc.5944.

    Article  Google Scholar 

  37. Li, Z. B., Y. Sun, T. Li, Y. H. Ding, and T. Hu, 2019b: Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5°C of Warming. Earth’s Future, 7, 1391–1406, https://doi.org/10.1029/2019EF001276.

    Article  Google Scholar 

  38. Lin, P. F., Z. B. He, J. Du, L. F. Chen, X. Zhu, and J. Li, 2017: Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China’s Qilian Mountains. Scientific Reports, 7, 2245, https://doi.org/10.1038/s41598-017-02345-4.

    Article  Google Scholar 

  39. Liu, R., S. C. Liu, R. J. Cicerone, C. J. Shiu, J. Li, J. L. Wang, and Y. H. Zhang, 2015: Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci., 32, 1027–1037, https://doi.org/10.1007/s00376-015-5002-1.

    Article  Google Scholar 

  40. Liu, Y. H., J. M. Feng, and Z. G. Ma, 2014: An analysis of historical and future temperature fluctuations over China based on CMIP5 simulations. Adv. Atmos. Sci., 31, 457–467, https://doi.org/10.1007/s00376-013-3093-0.

    Article  Google Scholar 

  41. Liu, Y. M., M. M. Lu, H. J. Yang, A. M. Duan, B. He, S. Yang, and G. X. Wu, 2020: Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts. National Science Review, 7, 534–552, https://doi.org/10.1093/nsr/nwaa011.

    Article  Google Scholar 

  42. Lü, J. M., Y. Li, P. M. Zhai, and J. M. Chen, 2017: Teleconnection patterns impacting on the summer consecutive extreme rainfall in Central-Eastern China. International Journal of Climatology, 37, 3367–3380, https://doi.org/10.1002/joc.4923.

    Article  Google Scholar 

  43. Luo, Y. L., and Coauthors, 2020: Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of New China. J. Meteor. Res., 34, 427–459, https://doi.org/10.1002/joc.4923.

    Article  Google Scholar 

  44. Norris, J., G. Chen, and J. D. Neelin, 2019: Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the community earth system model large ensemble. J. Climate, 32, 1025–1045, https://doi.org/10.1175/JCLI-D-18-0302.1.

    Article  Google Scholar 

  45. O’Gorman, P. A., 2015: Precipitation extremes under climate change. Current Climate Change Reports, 1, 49–59, https://doi.org/10.1007/s40641-015-0009-3.

    Article  Google Scholar 

  46. O’Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 14 773–14 777, https://doi.org/10.1073/pnas.0907610106.

    Article  Google Scholar 

  47. Pendergrass, A. G., K. A. Reed, and B. Medeiros, 2016: The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations. Geophys. Res. Lett., 43, 11 445–11 452, https://doi.org/10.1002/2016GL071285.

    Article  Google Scholar 

  48. Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nature Climate Change, 7, 423–427, https://doi.org/10.1038/nclimate3287.

    Article  Google Scholar 

  49. Prein, A. F., R. M. Rasmussen, K. Ikeda, C. H. Liu, M. P. Clark, and G. J. Holland, 2017: The future intensification of hourly precipitation extremes. Nature Climate Change, 7, 48–52, https://doi.org/10.1038/nclimate3168.

    Article  Google Scholar 

  50. Qin, P. H., and Z. H. Xie, 2016: Detecting changes in future precipitation extremes over eight river basins in China using RegCM4 downscaling. J. Geophys. Res., 121, 6802–6821, https://doi.org/10.1002/2016JD024776.

    Article  Google Scholar 

  51. Qin, P. H., and Z. H. Xie, 2017: Precipitation extremes in the dry and wet regions of China and their connections with the sea surface temperature in the eastern tropical Pacific Ocean. J. Geophys. Res., 122, 6273–6283, https://doi.org/10.1002/2016JD026242.

    Article  Google Scholar 

  52. Qu, X., G. Huang, and W. Zhou, 2014: Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theoretical and Applied Climatology, 117, 123–131, https://doi.org/10.1007/s00704-013-0995-9.

    Article  Google Scholar 

  53. Scher, S., R. J. Haarsma, H. de Vries, S. S. Drijfhout, and A. J. van Delden, 2017: Resolution dependence of extreme precipitation and deep convection over the Gulf Stream. Journal of Advances in Modeling Earth Systems, 9, 1186–1194, https://doi.org/10.1002/2016MS000903.

    Article  Google Scholar 

  54. Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1388, https://doi.org/10.1080/01621459.1968.10480934.

    Article  Google Scholar 

  55. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203.

    Google Scholar 

  56. Steiner, A. L., J. S. Pal, S. A. Rauscher, J. L. Bell, N. S. Diffenbaugh, A. Boone, L. C. Sloan, and F. Giorgi, 2009: Land surface coupling in regional climate simulations of the West African monsoon. Climate Dyn., 33, 869–892, https://doi.org/10.1007/s00382-009-0543-6.

    Article  Google Scholar 

  57. Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proceedings of the National Academy of Sciences of the United States of America, 107, 571–575, https://doi.org/10.1073/pnas.0903186107.

    Article  Google Scholar 

  58. Sun, C., J. P. Li, and R. Q. Ding, 2016: Strengthening relationship between ENSO and western Russian summer surface temperature. Geophys. Res. Lett., 43, 843–851, https://doi.org/10.1002/2015GL067503.

    Article  Google Scholar 

  59. Swain, D. L., D. E. Horton, D. Singh, and N. S. Diffenbaugh, 2016: Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California. Science Advances, 2, e1501344, https://doi.org/10.1126/sciadv.1501344.

    Article  Google Scholar 

  60. Tan, X. Z., T. Y. Gan, and D. G. Shao, 2016: Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies. J. Geophys. Res., 121, 14 469–14 486, https://doi.org/10.1002/2016JD025533.

    Article  Google Scholar 

  61. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  62. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205.

    Article  Google Scholar 

  63. Wang, B., and Coauthors, 2020: Monsoons climate change assessment. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-19-0335.1.

  64. Wang, G. L., D. G. Wang, K. E. Trenberth, A. Erfanian, M. Yu, M. G. Bosilovich, and D. T. Parr, 2017a: The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change, 7, 268–274, https://doi.org/10.1038/nclimate3239.

    Article  Google Scholar 

  65. Wang, H. J., Y. N. Chen, S. Xun, D. M. Lai, Y. T. Fan, and Z. Li, 2013: Changes in daily climate extremes in the arid area of northwestern China. Theor. Appl. Climatol., 112, 15–28, https://doi.org/10.1007/s00704-012-0698-7.

    Article  Google Scholar 

  66. Wang, H. J., and Coauthors, 2012: Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279–304, https://doi.org/10.1127/0941-2948/2012/0330.

    Article  Google Scholar 

  67. Wang, X. X., D. B. Jiang, and X. M. Lang, 2017b: Future extreme climate changes linked to global warming intensity. Science Bulletin, 62, 1673–1680, https://doi.org/10.1016/j.scib.2017.11.004.

    Article  Google Scholar 

  68. Wei, W. G., Z. W. Yan, and P. D. Jones, 2017: Potential predictability of seasonal extreme precipitation accumulation in China. Journal of Hydrometeorology, 18, 1071–1080, https://doi.org/10.1175/JHM-D-16-0141.1.

    Article  Google Scholar 

  69. Westra, S., and Coauthors, 2014: Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464.

    Article  Google Scholar 

  70. Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41, https://doi.org/10.1142/S1793536909000047.

    Article  Google Scholar 

  71. Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759–773, https://doi.org/10.1007/s00382-011-1128-8.

    Article  Google Scholar 

  72. Xiao, C., P. L. Wu, L. X. Zhang, and L. C. Song, 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Scientific Reports, 6, 38506, https://doi.org/10.1038/srep38506.

    Article  Google Scholar 

  73. Xie, P. P., M. Y. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. M. Liu, 2007a: A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8, 607–626, https://doi.org/10.1175/JHM583.1.

    Article  Google Scholar 

  74. Xie, Z. H., F. Yuan, Q. Y. Duan, J. Zheng, M. L. Liang, and F. Chen, 2007b: Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China. Journal of Hydrometeorology, 8, 447–468, https://doi.org/10.1175/JHM568.1.

    Article  Google Scholar 

  75. Xin, X. G., T. W. Wu, J. Zhang, J. C. Yao, and Y. J. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, https://doi.org/10.1002/joc.6590.

  76. Xu, Y., X. J. Gao, F. Giorgi, B. T. Zhou, Y. Shi, J. Wu, and Y. X. Zhang, 2018: Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Adv. Atmos. Sci., 35, 376–388, https://doi.org/10.1007/s00376-017-6269-1.

    Article  Google Scholar 

  77. Yan, J. N., L. Mu, L. Z. Wang, R. Ranjan, and A. Y. Zomaya, 2020: Temporal convolutional networks for the advance prediction of ENSO. Scientific Reports, 10, 8055, https://doi.org/10.1038/s41598-020-65070-5.

    Article  Google Scholar 

  78. Zhai, P. M., X. B. Zhang, H. Wan, and X. H. Pan, 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108, https://doi.org/10.1175/JCLI-3318.1.

    Article  Google Scholar 

  79. Zhang, C., S. L. Li, F. F. Luo, and Z. Huang, 2019: The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. International Journal of Climatology, 39, 4853–4868, https://doi.org/10.1002/joc.6114.

    Article  Google Scholar 

  80. Zhang, Q., Y. J. Zheng, V. P. Singh, M. Luo, and Z. H. Xie, 2017a: Summer extreme precipitation in eastern China: Mechanisms and impacts. J. Geophys. Res., 122, 2766–2778, https://doi.org/10.1002/2016JD025913.

    Article  Google Scholar 

  81. Zhang, W. X., and T. J. Zhou, 2020: Increasing impacts from extreme precipitation on population over China with global warming. Science Bulletin, 65, 243–252, https://doi.org/10.1016/j.scib.2019.12.002.

    Article  Google Scholar 

  82. Zhang, W. X., T. J. Zhou, L. W. Zou, L. X. Zhang, and X. L. Chen, 2018: Reduced exposure to extreme precipitation from 0.5°C less warming in global land monsoon regions. Nature Communications, 9, 3153, https://doi.org/10.1038/s41467-018-05633-3.

    Article  Google Scholar 

  83. Zhang, X. B., F. W. Zwiers, G. L. Li, H. Wan, and A. J. Cannon, 2017b: Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 10, 255–259, https://doi.org/10.1038/ngeo2911.

    Article  Google Scholar 

  84. Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews-Climate Change, 2, 851–870, https://doi.org/10.1002/wcc.147.

    Article  Google Scholar 

  85. Zhao, Y., D. L. Chen, J. Li, D. D. Chen, Y. Chang, J. Li, and R. Qin, 2020: Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings. Climate Dyn., 54, 2713–2730, https://doi.org/10.1007/s00382-020-05139-z.

    Article  Google Scholar 

  86. Zheng, D., 2008: Study on the Eco-geograhic Regional System of China. The Commercial Press, 387pp. (in Chinese)

  87. Zhu, J. X., G. Huang, B. Baetz, X. Q. Wang, and G. H. Cheng, 2019: Climate warming will not decrease perceived low-temperature extremes in China. Climate Dyn., 52, 5641–5656, https://doi.org/10.1007/s00382-018-4469-8.

    Article  Google Scholar 

  88. Zou, J., C. S. Zhan, Z. H. Xie, P. H. Qin, and S. S. Jiang, 2016a: Climatic impacts of the middle route of the South-to-North Water transfer project over the Haihe River basin in North China simulated by a regional climate model. J. Geophys. Res., 121, 8983–8999, https://doi.org/10.1002/2016JD024997.

    Article  Google Scholar 

  89. Zou, L. W., and T. J. Zhou, 2016: Future summer precipitation changes over CORDEX- East Asia domain downscaled by a regional ocean- atmosphere coupled model: A comparison to the stand-alone RCM. J. Geophys. Res., 121, 2691–2704, https://doi.org/10.1002/2015JD024519.

    Article  Google Scholar 

  90. Zou, L. W., T. J. Zhou, and D. D. Peng, 2016b: Dynamical down-scaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res., 121, 1442–1458, https://doi.org/10.1002/2015JD023912.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0606903), the National Natural Science Foundation of China (Grant No. 42075162), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA23090102). The observed daily precipitation data were provided by the China Meteorological Administration (http://www.cma.gov.cn) and the gauge-based precipitation data come from Xie et al. (2007a). The daily precipitation and surface air temperature data used by the CMIP5 models were downloaded from https://esgf-node.llnl.gov/search/cmip5.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peihua Qin.

Additional information

Article Highlights

• The CMIP5 ensemble mean and RCM ensemble mean capture the spatial variations in the historical precipitation extremes of China.

• Precipitation extremes in China are projected to increase in the mid-future and far-future periods relative to the historical period under global warming.

• Precipitation extremes are quantified by the atmospheric vertical wind and specific humidity based on the water vapor equation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Xie, Z., Zou, J. et al. Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations. Adv. Atmos. Sci. 38, 460–479 (2021). https://doi.org/10.1007/s00376-020-0141-4

Download citation

Key words

  • precipitation extremes
  • regional climate model
  • CMIP5 models

关键词

  • 极端降水
  • 区域气候模式
  • CMIP5