Skip to main content

Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates

Abstract

The North China Plain (NCP) is a region that experiences serious aerosol pollution. A number of studies have focused on aerosol pollution in urban areas in the NCP region; however, research on characterizing aerosols in rural NCP areas is comparatively limited. In this study, we deployed a TD-HR-AMS (thermodenuder high-resolution aerosol mass spectrometer) system at a rural site in the NCP region in summer 2013 to characterize the chemical compositions and volatility of submicron aerosols (PM1). The average PM1 mass concentration was 51.2 ± 48.0 µg m−3 and organic aerosol (OA) contributed most (35.4%) to PM1. Positive matrix factorization (PMF) analysis of OA measurements identified four OA factors, including hydrocarbon-like OA (HOA, accounting for 18.4%), biomass burning OA (BBOA, 29.4%), less-oxidized oxygenated OA (LO-OOA, 30.8%) and more-oxidized oxygenated OA (MO-OOA, 21.4%). The volatility sequence of the OA factors was HOA > BBOA > LO-OOA > MO-OOA, consistent with their oxygen-to-carbon (O:C) ratios. Additionally, the mean concentration of organonitrates (ON) was 1.48–3.39 µg m−3, contributing 8.1%–19% of OA based on cross validation of two estimation methods with the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement. Correlation analysis shows that ON were more correlated with BBOA and black carbon emitted from biomass burning but poorly correlated with LO-OOA. Also, volatility analysis for ON further confirmed that particulate ON formation might be closely associated with primary emissions in rural NCP areas.

摘 要

我国华北平原是一个重度雾霾事件频发的地区。当前较多研究集中关注了华北平原城市地区的气溶胶污染,而对农村地区的气溶胶污染特征研究相对较少。本研究利用热扩散管与高分辨飞行时间气溶胶质谱联用系统(thermodenuder high-resolution aerosol mass spectrometer,TD-HR-AMS),于2013年夏季在华北平原的农村地区开展了对亚微米气溶胶(PM1)化学组成及挥发性特征的观测。观测结果显示,PM1在观测期间的平均浓度水平为51.2 ± 48.0 µg m−3,其中,有机气溶胶(OA)贡献最多,占比为35.4%。进一步采用正矩阵因子法(PMF)解析得到了四类不同OA因子:还原性有机气溶胶(hydrocarbon-like OA, HOA),生物质燃烧有机气溶胶(biomass burning OA, BBOA), 氧化程度较低的含氧有机气溶胶(less-oxidized oxygenated OA , LO-OOA)以及氧化程度较高的含氧有机气溶胶(more-oxidized oxygenated OA , LO-OOA)。这四类OA因子对总OA的贡献分别为18.4%,29.4%,30.8%和21.4%。OA因子的挥发性排序为:HOA > BBOA > LO-OOA > MO-OOA,与其氧碳比(O:C)从低到高排序一致。此外,本研究还用两种方法估算了OA中有机硝酸酯(ON)的质量浓度,为1.48–3.39 µg m−3,对OA的贡献比例为8.1%-19%。相关性分析结果显示ON与BBOA和生物质燃烧排放的黑碳的相关性最高,而与LO-OOA相关性较低。通过对ON的挥发性特征进行分析,进一步说明了华北平原农村地区ON的生成可能与一次性排放有着紧密联系。

This is a preview of subscription content, access via your institution.

References

  • Aiken, A. C., and Coauthors, 2009: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0)-Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009.

    Google Scholar 

  • Ahern, A. T., and Coauthors, 2019: Production of secondary organic aerosol during aging of biomass burning smoke from fresh fuels and its relationship to VOC precursors. J. Geophys. Res., 124, 3583–3606, https://doi.org/10.1299/2018JD029068.

    Google Scholar 

  • Alfarra, M. R., and Coauthors, 2007: Identification of the mass spectral signature of organic aerosols from wood burning emissions. Environ. Sci. Technol., 41, 5770–5777, https://doi.org/10.1021/es062289b.

    Google Scholar 

  • Allan, J. D., and Coauthors, 2010: Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmospheric Chemistry and Physics, 10, 647–668, https://doi.org/10.5194/acp-10-647-2010.

    Google Scholar 

  • Ayres, B. R., and Coauthors, 2015: Organic nitrate aerosol formation via NO3+ biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015.

    Google Scholar 

  • Beddows, D. C. S., and R. M. Harrison, 2019: Receptor modelling of both particle composition and size distribution from a background site in London, UK-A two-step approach. Atmospheric Chemistry and Physics, 19, 4863–4876, https://doi.org/10.5194/acp-19-4863-2019.

    Google Scholar 

  • Bertman, S. B., and Coauthors, 1995: Evolution of alkyl nitrates with air mass age. J. Geophys. Res., 100, 22805–22813, https://doi.org/10.1029/95JD02030.

    Google Scholar 

  • Bi, X. H., and Coauthors, 2015: Real-time and single-particle volatility of elemental carbon-containing particles in the urban area of Pearl River Delta region, China. Atmos. Environ., 118, 194–202, https://doi.org/10.1016/j.atmosenv.2015.08.012.

    Google Scholar 

  • Bilde, M., and Coauthors, 2015: Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: From dicarboxylic acids to complex mixtures. Chemical Reviews, 115, 4115–4156, https://doi.org/10.1021/cr5005502.

    Google Scholar 

  • Bougiatioti, A., and Coauthors, 2014: Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics, 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014.

    Google Scholar 

  • Boyd, C. M., J. Sanchez, L. Xu, A. J. Eugene, T. Nah, W. Y. Tuet, M. I. Guzman, and N. L. Ng, 2015: Secondary organic aerosol formation from the β-pinene+NO3 system: Effect of humidity and peroxy radical fate. Atmospheric Chemistry and Physics, 15, 7497–7522, https://doi.org/10.5194/acp-15-7497-2015.

    Google Scholar 

  • Boyd, C. M., T. Nah, L. Xu, T. Berkemeier, and N. L. Ng, 2017: Secondary Organic Aerosol (SOA) from nitrate radical oxidation of monoterpenes: Effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. Environ. Sci. Technol., 51, 7831–7841, https://doi.org/10.1021/acs.est.7b01460.

    Google Scholar 

  • Bruns, E. A., and Coauthors, 2010: Comparison of FTIR and particle mass spectrometry for the measurement of particulate organic nitrates. Environ. Sci. Technol., 44, 1056–1061, https://doi.org/10.1021/es9029864.

    Google Scholar 

  • Canagaratna, M. R., and Coauthors, 2007: Chemical and micro-physical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26, 185–222, https://doi.org/10.1002/mas.20115.

    Google Scholar 

  • Canagaratna, M. R., and Coauthors, 2015: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 15, 253–272, https://doi.org/10.5194/acp-15-253-2015.

    Google Scholar 

  • Cao, L.-M., X.-F. Huang, Y.-Y. Li, M. Hu, and L.-Y. He, 2018: Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China. Atmospheric Chemistry and Physics, 18, 1729–1743, https://doi.org/10.5194/acp-18-1729-2018.

    Google Scholar 

  • Cao, L.-M., X.-F. Huang, C. Wang, Q. Zhu, and L.-Y. He, 2019: Characterization of submicron aerosol volatility in the regional atmosphere in Southern China. Chemosphere, 236, 124383, https://doi.org/10.1016/j.chemosphere.2019.124383.

    Google Scholar 

  • Charlson, R. J., and J. Heintzenberg, 1995: Aerosol Forcing of Climate. Wiley, Chichester, 184–195.

  • Cubison, M. J., and Coauthors, 2011: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011.

    Google Scholar 

  • Dassios, K. G., and S. N. Pandis, 1999: The mass accommodation coefficient of ammonium nitrate aerosol. Atmos. Environ., 33, 2993–3003, https://doi.org/10.1016/S1352-2310(99)00079-5.

    Google Scholar 

  • DeCarlo, P. F., and Coauthors, 2006: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Analytical Chemistry, 78, 8281–8289, https://doi.org/10.1021/ac061249n.

    Google Scholar 

  • Dockery, D. W., C. A. Pope, X. P. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., and F. E. Speizer, 1993: An association between air pollution and mortality in six US cities. The New England Journal of Medicine, 329, 1753–1759, https://doi.org/10.1056/NEJM199312093292401.

    Google Scholar 

  • Farmer, D. K., A. Matsunaga, K. S. Docherty, J. D. Surratt, J. H. Seinfeld, P. J. Ziemann, and J. L. Jimenez, 2010: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 107, 6670–6675, https://doi.org/10.1073/pnas.0912340107.

    Google Scholar 

  • Fry, J. L., and Coauthors, 2009: Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmospheric Chemistry and Physics, 9, 1431–1449, https://doi.org/10.5194/acp-9-1431-2009.

    Google Scholar 

  • Fry, J. L., and Coauthors, 2013: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013.

    Google Scholar 

  • Gu, J. X., Z. P. Bai, A. X. Liu, L. P. Wu, Y. Y. Xie, W. F. Li, H. Y. Dong, and X. Zhang, 2010: Characterization of atmospheric organic carbon and element carbon of PM2.5 and PM10 at Tianjin, China. Aerosol and Air Quality Research, 10, 167–176, https://doi.org/10.4209/aaqr.2009.12.0080.

    Google Scholar 

  • Hao, L. Q., and Coauthors, 2014: Atmospheric submicron aerosol composition and particulate organic nitrate formation in a boreal forestland-urban mixed region. Atmospheric Chemistry and Physics, 14, 17263–17298, https://doi.org/10.5194/acp-14-13483-2014.

    Google Scholar 

  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543, https://doi.org/10.1029/1999RG000078.

    Google Scholar 

  • Holzinger, R., C. Warneke, A. Hansel, A. Jordan, W. Lindinger, D. H. Scharffe, G. Schade, and P. J. Crutzen, 1999: Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide. Geophys. Res. Lett., 26, 1161–1164, https://doi.org/10.1029/1999GL900156.

    Google Scholar 

  • Huang, X.-F., and Coauthors, 2010: Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing olympic games using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 10, 8933–8945, https://doi.org/10.5194/acp-10-8933-2010.

    Google Scholar 

  • Huang, X.-F., L.-Y. He, L. Xue, T.-L. Sun, L.-W. Zeng, Z.-H. Gong, M. Hu, and T. Zhu, 2012: Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmospheric Chemistry and Physics, 12, 4897–4907, https://doi.org/10.5194/acp-12-4897-2012.

    Google Scholar 

  • Huang, X.-F., and Coauthors, 2013: Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmos. Environ., 64, 200–207, https://doi.org/10.1016/j.atmosenv.2012.09.059.

    Google Scholar 

  • Huffman, J. A., P. J. Ziemann, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez, 2008: Development and characterization of a fast-stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements. Aerosol Science and Technology, 42, 395–407, https://doi.org/10.1080/02786820802104981.

    Google Scholar 

  • Huffman, J. A., K. S. Docherty, C. Mohr, M. J. Cubison, I. M. Ulbrich, P. J. Ziemann, T. B. Onasch, and J. L. Jimenez, 2009a: Chemically-resolved volatility measurements of organic aerosol from different sources. Environ. Sci. Technol., 43, 5351–5357, https://doi.org/10.1021/es803539d.

    Google Scholar 

  • Huffman, J. A., and Coauthors, 2009b: Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 9, 7161–7182, https://doi.org/10.5194/acp-9-7161-2009.

    Google Scholar 

  • Iinuma, Y., O. Böge, R. Gräfe, and H. Herrmann, 2010: Methylnitrocatechols: Atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ. Sci. Technol., 44, 8453–8459, https://doi.org/10.1021/es102938a.

    Google Scholar 

  • Iinuma, Y., M. Keywood, and H. Herrmann, 2016: Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires. Atmos. Environ., 130, 54–63, https://doi.org/10.1016/j.atmosenv.2015.12.014.

    Google Scholar 

  • IPCC, 2013: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Jenkin, M. E., and K. C. Clemitshaw, 2000: Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmos. Environ., 34, 2499–2527, https://doi.org/10.1016/S1352-2310(99)00478-1.

    Google Scholar 

  • Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353.

    Google Scholar 

  • Joo, T., J. C. Rivera-Rios, M. Takeuchi, M. J. Alvarado, and N. L. Ng, 2019: Secondary organic aerosol formation from reaction of 3-methylfuran with nitrate radicals. ACS Earth and Space Chemistry, 3, 922–934, https://doi.org/10.1021/acsearthspacechem.9b00068.

    Google Scholar 

  • Kolesar, K. R., Z. Y. Li, K. R. Wilson, and C. D. Cappa, 2015: Heating-induced evaporation of nine different secondary organic aerosol types. Environ. Sci. Technol., 49, 12242–12252, https://doi.org/10.1021/acs.est.5b03038.

    Google Scholar 

  • Kuhn, T., M. Krudysz, Y. F. Zhu, P. M. Fine, W. C. Hinds, J. Froines, and C. Sioutas, 2005: Volatility of indoor and outdoor ultrafine particulate matter near a freeway. Journal of Aerosol Science, 36, 291–302, https://doi.org/10.1016/j.jaerosci.2004.09.006.

    Google Scholar 

  • Lanz, V. A., M. R. Alfarra, U. Baltensperger, B. Buchmann, C. Hueglin, and A. S. H. Prévôt, 2007: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmospheric Chemistry and Physics, 7, 1503–1522, https://doi.org/10.5194/acp-7-1503-2007.

    Google Scholar 

  • Lazaridis, M., 1999: Gas-particle partitioning of organic compounds in the atmosphere. Journal of Aerosol Science, 30, 1165–1170, https://doi.org/10.1016/S0021-8502(98)00788-5.

    Google Scholar 

  • Lee, B. H., and Coauthors, 2016: Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 113, 1516–1521, https://doi.org/10.1073/pnas.1508108113.

    Google Scholar 

  • Li, H. Y., and Coauthors, 2017: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion. Atmospheric Chemistry and Physics, 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017.

    Google Scholar 

  • Liu, Q., Y. Sun, B. Hu, Z. R. Liu, S. Akio, and Y. S. Wang, 2012: In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Chinese Science Bulletin, 57, 819–826, https://doi.org/10.1007/s11434-011-4886-0.

    Google Scholar 

  • Matthew, B. M., A. M. Middlebrook, and T. B. Onasch, 2008: Collection efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Science and Technology, 42, 884–898, https://doi.org/10.1080/02786820802356797.

    Google Scholar 

  • Middlebrook, A. M., R. Bahreini, J. L. Jimenez, and M. R. Canagaratna, 2012: Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data. Aerosol Science and Technology, 46, 258–271, https://doi.org/10.1080/02786826.2011.620041.

    Google Scholar 

  • Mohr, C., and Coauthors, 2012: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 12, 1649–1665, https://doi.org/10.5194/acp-12-1649-2012.

    Google Scholar 

  • Mohr, C., and Coauthors, 2013: Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United kingdom during winter time. Environ. Sci. Technol., 47, 6316–6324, https://doi.org/10.1021/es400683v.

    Google Scholar 

  • Ng, N. L., and Coauthors, 2010: Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010.

    Google Scholar 

  • Ng, N. L., and Coauthors, 2017: Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017.

    Google Scholar 

  • Nie, W., and Coauthors, 2017: Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles. Atmospheric Chemistry and Physics, 17, 3659–3672, https://doi.org/10.5194/acp-17-3659-2017.

    Google Scholar 

  • Paatero, P., and U. Tapper, 1994: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203.

    Google Scholar 

  • Pankow, J. F., and K. C. Barsanti, 2009: The carbon number-polarity grid: A means to manage the complexity of the mix of organic compounds when modeling atmospheric organic particulate matter. Atmos. Environ., 43, 2829–2835, https://doi.org/10.1016/j.atmosenv.2008.12.050.

    Google Scholar 

  • Perring, A. E., S. E. Pusede, and R. C. Cohen, 2013: An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chemical Reviews, 113, 5848–5870, https://doi.org/10.1021/cr300520x.

    Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034.

    Google Scholar 

  • Rollins, A. W., and Coauthors, 2012: Evidence for NOx control over nighttime SOA formation. Science, 337, 1210–1212, https://doi.org/10.1126/science.1221520.

    Google Scholar 

  • Russo, R. S., Y. Zhou, K. B. Haase, O. W. Wingenter, E. K. Frinak, H. Mao, R. W. Talbot, and B. C. Sive, 2010: Temporal variability, sources, and sinks of C1-C5 alkyl nitrates in coastal New England. Atmospheric Chemistry and Physics, 10, 1865–1883, https://doi.org/10.5194/acp-10-1865-2010.

    Google Scholar 

  • Saha, P. K., and A. P. Grieshop, 2016: Exploring divergent volatility properties from yield and thermodenuder measurements of secondary organic aerosol from α-pinene ozonolysis. Environ. Sci. Technol., 50, 5740–5749, https://doi.org/10.1021/acs.est.6b00303.

    Google Scholar 

  • Saleh, R., J. Walker, and A. Khlystov, 2008: Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: The integrated volume method. Journal of Aerosol Science, 39, 876–887, https://doi.org/10.1016/j.jaerosci.2008.06.004.

    Google Scholar 

  • Sandradewi, J., A. S. H. Prévôt, S. Szidat, N. Perron, M. R. Alfarra, V. A. Lanz, E. Weingartner, and U. Baltensperger, 2008: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol., 42, 3316–3323, https://doi.org/10.1021/es702253m.

    Google Scholar 

  • Sato, K., A. Takami, T. Isozaki, T. Hikida, A. Shimono, and T. Imamura, 2010: Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons. Atmos. Environ., 44, 1080–1087, https://doi.org/10.1016/j.atmosenv.2009.12.013.

    Google Scholar 

  • Schneider, J., and Coauthors, 2006: Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. International Journal of Mass Spectrometry, 258, 37–49, https://doi.org/10.1016/j.ijms.2006.07.008.

    Google Scholar 

  • Shrivastava, M. K., E. M. Lipsky, C. O. Stanier, and A. L. Robinson, 2006: Modeling semivolatile organic aerosol mass emissions from combustion systems. Environ. Sci. Technol., 40, 2671–2677, https://doi.org/10.1021/es0522231.

    Google Scholar 

  • Song, Y., Y. H. Zhang, S. D. Xie, L. M. Zeng, M. Zheng, L. G. Salmon, M. Shao, and S. Slanina, 2006: Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos. Environ., 40, 1526–1537, https://doi.org/10.1016/j.atmosenv.2005.10.039.

    Google Scholar 

  • Sun, Y. L., Z. F. Wang, H. B. Dong, T. Yang, J. Li, X. L. Pan, P. Chen, and J. T. Jayne, 2012: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmos. Environ., 51, 250–259, https://doi.org/10.1016/j.atmosenv.2012.01.013.

    Google Scholar 

  • Teng, A. P., J. D. Crounse, L. Lee, J. M. St. Clair, R. C. Cohen, and P. O. Wennberg, 2015: Hydroxy nitrate production in the OH-initiated oxidation of alkenes. Atmospheric Chemistry and Physics, 15, 4297–4316, https://doi.org/10.5194/acp-15-4297-2015.

    Google Scholar 

  • Teng, A. P., J. D. Crounse, and P. O. Wennberg, 2017: Isoprene peroxy radical dynamics. Journal of the American Chemical Society, 139, 5367–5377, https://doi.org/10.1021/jacs.6b12838.

    Google Scholar 

  • Ulbrich, I. M., M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez, 2009: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009.

    Google Scholar 

  • Wang, L. T., Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang, 2014: The 2013 severe haze over southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmospheric Chemistry and Physics, 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014.

    Google Scholar 

  • Xu, L., S. Suresh, H. Guo, R. J. Weber, and N. L. Ng, 2015a: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: Spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015.

    Google Scholar 

  • Xu, L., and Coauthors, 2015b: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 112, 37–42, https://doi.org/10.1073/pnas.1417609112.

    Google Scholar 

  • Xu, W. Q., and Coauthors, 2017: Seasonal characterization of organic nitrogen in atmospheric aerosols using high resolution aerosol mass spectrometry in Beijing, China. ACS Earth and Space Chemistry, 1, 673–682, https://doi.org/10.1021/acsearthspacechem.7b00106.

    Google Scholar 

  • Xu, W. Q., and Coauthors, 2019: Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019.

    Google Scholar 

  • Yu, K. Y., Q. Zhu, K. Du, and X.-F. Huang, 2019: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China. Atmospheric Chemistry and Physics, 19, 5235–5249, https://doi.org/10.5194/acp-19-5235-2019.

    Google Scholar 

  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, I. M. Ulbrich, N. L. Ng, D. R. Worsnop, and Y. L. Sun, 2011: Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Analytical and Bioanalytical Chemistry, 401, 3045–3067, https://doi.org/10.1007/s00216-011-5355-y.

    Google Scholar 

  • Zhang, Y. J., and Coauthors, 2015: Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics, 15, 1331–1349, https://doi.org/10.5194/acp-15-1331-2015.

    Google Scholar 

  • Zhou, S., and Coauthors, 2017: Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 17, 2477–2493, https://doi.org/10.5194/acp-17-2477-2017.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (Grant No. 2017YFC0210004), the National Natural Science Foundation of China (Grant No. 91744202), and the China Postdoctoral Science Foundation and Guangdong Province Outstanding Young Talents for the International Education & Development Plan: Post-Doctoral Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Yan He.

Additional information

Article Highlights

• Four types of OA factors were resolved by PMF at a rural NCP site. The volatility sequence of OA factors was consistent with their O:C ratios.

• Organonitrates evaporated faster than OA factors but slower than inorganic nitrates, suggesting they were more relevant to primary emissions.

• Organonitrates accounted for 8.1%–19% of OA and they were largely influenced by biomass burning emissions in rural NCP areas.

Electronic Supplementary Material

376_2020_127_MOESM1_ESM.pdf

Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Cao, LM., Tang, MX. et al. Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates. Adv. Atmos. Sci. 38, 1115–1127 (2021). https://doi.org/10.1007/s00376-020-0127-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-020-0127-2

Key words

  • organic aerosols
  • volatility
  • organonitrates
  • biomass burning
  • North China Plain

关键词

  • 有机气溶胶
  • 挥发性
  • 有机硝酸酯
  • 生物质燃烧
  • 华北平原