Combined Impacts of Warm Central Equatorial Pacific Sea Surface Temperatures and Anthropogenic Warming on the 2019 Severe Drought in East China

Abstract

A severe drought occurred in East China (EC) from August to October 2019 against a background of long-term significant warming and caused widespread impacts on agriculture and society, emphasizing the urgent need to understand the mechanism responsible for this drought and its linkage to global warming. Our results show that the warm central equatorial Pacific (CEP) sea surface temperature (SST) and anthropogenic warming were possibly responsible for this drought event. The warm CEP SST anomaly resulted in an anomalous cyclone over the western North Pacific, where enhanced northerly winds in the northwestern sector led to decreased water vapor transport from the South China Sea and enhanced descending air motion, preventing local convection and favoring a precipitation deficiency over EC. Model simulations in the Community Earth System Model Large Ensemble Project confirmed the physical connection between the warm CEP SST anomaly and the drought in EC. The extremely warm CEP SST from August to October 2019, which was largely the result of natural internal variability, played a crucial role in the simultaneous severe drought in EC. The model simulations showed that anthropogenic warming has greatly increased the frequency of extreme droughts in EC. They indicated an approximate twofold increase in extremely low rainfall events, high temperature events, and concurrently dry and hot events analogous to the event in 2019. Therefore, the persistent severe drought over EC in 2019 can be attributed to the combined impacts of warm CEP SST and anthropogenic warming.

摘要

2019年,长江中下游地区在显著增暖背景下遭遇严重的伏秋连旱,给农业生产和人民生活造成较大影响,导致该极端干旱事件产生的机制及其与全球变暖之间的联系亟待研究。本文的分析结果表明,赤道中太平洋暖海温和人类活动导致的全球变暖对该事件均有重要贡献。中太平洋暖海温异常导致西北太平洋出现气旋性环流异常,其西北侧的北风异常减弱了源自南海的水汽输送,增强了长江中下游地区的下沉运动,抑制局地对流,导致降水稀少。CESM-LE计划(Community Earth System Model Large Ensemble Project)的模式模拟结果验证了赤道中太平洋暖海温异常与长江中下游地区干旱之间的物理联系。赤道中太平洋极端暖海温异常作为气候系统内部变率,对2019年长江中下游地区的伏秋连旱具有重要贡献;同时,人类活动引起的全球变暖显著增加了类似2019年长江中下游地区极端干旱事件的发生概率。基于CESM-LE计划的模式模拟结果,全球变暖使类似2019年长江中下游地区的极端少雨、高温和热干旱事件的发生概率大约增加了2倍。

This is a preview of subscription content, access via your institution.

References

  1. Agha Kouchak, A., L. Y. Cheng, O. Mazdiyasni, and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 8847–8852, https://doi.org/10.1002/2014GL062308.

    Article  Google Scholar 

  2. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    Article  Google Scholar 

  3. Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nature Climate Change, 2(7), 491–496, https://doi.org/10.1038/nclimate1452.

    Article  Google Scholar 

  4. Dai, A. G., 2011: Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65, https://doi.org/10.1002/wcc.81.

    Google Scholar 

  5. Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58, https://doi.org/10.1038/nclimate1633.

    Article  Google Scholar 

  6. Diffenbaugh, N. S., D. L. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112, 3931–3936, https://doi.org/10.1073/pnas.1422385112.

    Article  Google Scholar 

  7. Doi, T., S. K. Behera, S. K., and T. Yamagata, 2020: Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett., 47, e2019GL086713, https://doi.org/10.1029/2019GL086713.

    Google Scholar 

  8. Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.

    Article  Google Scholar 

  9. Feng, J., J. P. Li, F. Zheng, F. Xie, and C. Sun, 2016: Contrasting impacts of developing phases of two types of El Niño on Southern China rainfall. J. Meteor. Soc. Japan, 4(4), 359–370, https://doi.org/10.2151/jmsj.2016-019.

    Article  Google Scholar 

  10. Feng, J., J. P. Li, J. L. Zhu, H. Liao, and Y. Yang, 2017: Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. J. Geophys. Res., 122, 2734–2749, https://doi.org/10.1002/2016JD026175.

    Article  Google Scholar 

  11. Feng, L., T. Li, and W. D. Yu, 2014: Cause of severe droughts in Southwest China during 1951–2010. Climate Dyn., 43(7–8), 2033–2042, https://doi.org/10.1007/s00382-013-2026-z.

    Article  Google Scholar 

  12. Gao, T., M. Luo, N. C. Lau, and T. O. Chan, 2020: Spatially distinct effects of two El Niño types on summer heat extremes in China. Geophys. Res. Lett., 47, e2020GL086982, https://doi.org/10.1029/2020GL086982.

    Google Scholar 

  13. Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30(10), 1544, https://doi.org/10.1029/2002GL016831.

    Article  Google Scholar 

  14. Ham, Y. G., J. S. Kug, and I. S. Kang, 2007: Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. J. Geophys. Res., 112, D24105, https://doi.org/10.1029/2007JD008744.

    Article  Google Scholar 

  15. Hoell, A., J. Perlwitz, C. Dewes, K. Wolter, I. Rangwala, X. W. Quan, and J. Eischeid, 2019: Anthropogenic contributions to the intensity of the 2017 United States northern great plains drought. Bull. Amer. Meteor. Soc., 100(1), S19–S24, https://doi.org/10.1175/BAMS-D-18-0127.1.

    Article  Google Scholar 

  16. Huang, B. Y., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [indicate subset used]. NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5T72FNM.

  17. Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166–171, https://doi.org/10.1038/nclimate2837.

    Article  Google Scholar 

  18. Huang, T., L. G. Xu, and H. X. Fan, 2019: Drought characteristics and its response to the global climate variability in the Yangtze River Basin, China. Werter, 11(1), 13, https://doi.org/10.3390/w11010013.

    Google Scholar 

  19. Jin, D. C., Z. Y. Guan, and W. Y. Tang, 2013: The extreme drought event during winter-spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region. J. Climate, 26(20), 8210–8222, https://doi.org/10.1175/JCLI-D-12-00652.1.

    Article  Google Scholar 

  20. Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    Article  Google Scholar 

  21. Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.

    Article  Google Scholar 

  22. Lewis, S. L., P. M., Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad, 2011: The 2010 amazon drought. Science, 311(6017), 554, https://doi.org/10.1166/scincce.1200807.

    Article  Google Scholar 

  23. Li, C. X., and T. B. Zhao, 2019: Seasonal responses of precipitation in China to El Niño and positive Indian Ocean Dipole modes. Atmosphere, 10, 372, https://doi.org/10.3390/atmos10070372.

    Article  Google Scholar 

  24. Li, H. X., H. P. Chen, H. J. Wang, J. Q. Sun, and J. H. Ma, 2018: Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31(12), 4705–4725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    Article  Google Scholar 

  25. Li, Y, B. S. Ma, J. Feng, and Y. Lu, 2019: Influence of the strongest central Pacific El Niño-Southern Oscillation events on the precipitation in eastern China. International Journal of Climatology, 39, 3076–3090, https://doi.org/10.1002/joc.6004.

    Article  Google Scholar 

  26. Lott, F. C., N. Christidis, and P. A. Stott, 2013: Can the 2011 East African drought be attributed to human-induced climate change? Geophys Res. Lett., 40, 1177–1181, https://doi.org/10.1002/grl.50235.

    Article  Google Scholar 

  27. Lu, E., and Coauthors, 2014: The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res., 119, 5881–5894, https://doi.org/10.1002/2014JD021558.

    Article  Google Scholar 

  28. Lu, E., Y. L. Luo, R. H. Zhang, Q. X. Wu, and L. P. Liu, 2011: Regional atmospheric anomalies responsible for the 2009–2010 severe drought in China. J. Geophys. Res., 116, D21114, https://doi.org/10.1029/2011JD015706.

    Google Scholar 

  29. Ma, S. M., T. J. Zhou, O. Angélil, and H. Shiogama, 2017: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. J. Climate, 30 (16), 6543–6560, https://doi.org/10.1175/JCLI-D-16-0636.1.

    Article  Google Scholar 

  30. Ren, H. L., B. Lu, J. H. Wan, B. Tian, and P. Q. Zhang, 2018: Identification standard for ENSO events and its application to climate monitoring and prediction in China. Journal of Meteorological Research, 32(6), 923–936, https://doi.org/10.1007/s13351-018-8078-6.

    Article  Google Scholar 

  31. Sternberg, T., 2011: Regional drought has a global impact. Nature, 472(7342), 169, https://doi.org/10.1038/472169d.

    Article  Google Scholar 

  32. Sun, C. H., and S. Yang, 2012: Persistent severe drought in southern China during winter-spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500.

    Article  Google Scholar 

  33. Sun, F. Y., A. Mejia, P. Zeng, and Y. Che, 2019: Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin. Science of the Total Environment, 696, 134076, https://doi.org/10.1016/j.scitotenv.2019.134076.

    Article  Google Scholar 

  34. Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall, 2018: Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8(5), 427–433, https://doi.org/10.1038/s41558-018-0140-y.

    Article  Google Scholar 

  35. Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Research, 47, 123–138, https://doi.org/10.3354/cr00953.

    Article  Google Scholar 

  36. Trenberth, K. E., A. G. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nature Climate Change, 4, 17–22, https://doi.org/10.1038/nclimate2067.

    Article  Google Scholar 

  37. Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change, 5(8), 725–730, https://doi.org/10.1038/nclimate2657.

    Article  Google Scholar 

  38. Wang, D., A. H. Wang, L. L. Xu, and X. H. Kong, 2020: The linkage between two types of El Niño events and summer stream-flow over the Yellow and Yangtze River Basins. Adv. Atmos. Sci., 37, 160–172, https://doi.org/10.1007/s00376-019-9049-2.

    Article  Google Scholar 

  39. Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059–2078, https://doi.org/10.1002/joc.3822.

    Article  Google Scholar 

  40. Wang, L., W. Chen, W. Zhou, and G. Huang, 2015: Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Climate Dyn., 45(9–10), 2527–2539, https://doi.org/10.1007/s00382-015-2490-8.

    Article  Google Scholar 

  41. Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 6819–6828, https://doi.org/10.1002/2015GL064924.

    Article  Google Scholar 

  42. WMO, 2020: WMO Statement on the State of the Global Climate in 2019. [Available online from https://library.wmo.int/doc_num.php?explnum_id=10211]

  43. Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the Western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    Article  Google Scholar 

  44. Wu, Z. W., J. P. Li, J. H. He, and Z. H. Jiang, 2006: Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River. Geophys. Res. Lett., 33, L05813, https://doi.org/10.1029/2005GL024487.

    Google Scholar 

  45. Yang, J., D. Y. Gong, W. S. Wang, M. Hu, and R. Mao, 2012: Extreme drought event of 2009/2010 over southwestern China. Meteorol. Acs., 115(3–4), 173–184, https://doi.org/10.1007/s00703-011-0172-6.

    Google Scholar 

  46. Yang, S. Y., B. Y. Wu, R. H. Zhang, and S. W. Zhou, 2013: Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia. Acta Meteorologica Sinica, 24 (2), 129–143, https://doi.org/10.1007/s13351-013-0201-0.

    Article  Google Scholar 

  47. Yu, J. Y., X. Wang, S. Yang, H. Paek, and M. Y. Chen, 2017: The changing El Niño-Southern Oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, Wang et al., Eds., American Geophysical Union, 1–38, https://doi.org/10.1002/9781119068020.ch1.

  48. Yu, M. X., Q. F. Li, M. J. Hayes, M. D. Svoboda, and R. R. Heim, 2014: Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? International Journal of Climatology, 34(3), 545–558, https://doi.org/10.1002/joc.3701.

    Article  Google Scholar 

  49. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J. Climate, 25, 7702–7722, https://doi.org/10.1155/JCLI-D-11-00576.1.

    Article  Google Scholar 

  50. Zeng, D. W., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land-atmosphere coupling on Northeast China persistent drought in spring-summer of 2017. J. Climate, 32(21), 7403–7420, https://doi.org/10.1175/JCLI-D-19-0175.1.

    Article  Google Scholar 

  51. Zhang, D., Q. Zhang, A. D. Werner, and X. M. Liu, 2016: GRACE-Based hydrological drought evaluation of the Yangtze River Basin, China. Journal of Hydrometeorology, 14, 811–828, https://doi.org/10.1175/JHM-D-15-0084.1.

    Article  Google Scholar 

  52. Zhang, L., F. Sielmann, K. Fraedrich, and X. F. Zhi, 2017: Atmospheric response to Indian Ocean Dipole forcing: Changes of Southeast China winter precipitation under global warming. Climate Dyn., 48, 1467–1482, https://doi.org/10.1007/s00382-016-3152-1.

    Article  Google Scholar 

  53. Zhang, L., P. L. Wu, T. J. Zhou, and C. Xiao, 2018: ENSO transition from La Niña to El Niño drives prolonged spring-summer drought over north China. J. Climate, 31(9), 3509–3523, https://doi.org/10.1175/JCLI-D-17-0440.1.

    Article  Google Scholar 

  54. Zhang, L. X., and T. J. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 3375–3399, https://doi.org/10.1175/JCLI-D-14-00259.1.

    Article  Google Scholar 

  55. Zhang, W. J., F. F. Jin, J. P. Li, and H. L. Ren, 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89(5), 563–569, https://doi.org/10.2151/jmsj.2011-510.

    Article  Google Scholar 

  56. Zhang, W. J., F. F. Jin, J. X. Zhao, L. Qi, and H. L. Ren, 2013: The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J. Climate, 26(21), 8392–8405, https://doi.org/10.1175/JCLI-D-12-00851.1.

    Article  Google Scholar 

  57. Zhang, W. J., F. F. Jin, and A. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regimeshift. Geophys. Res. Lett., 41, 4020–4026, https://doi.org/10.1002/2014GL060130.

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Key R&D Program (Grant No. 2018YFC1505904), the National Natural Science Foundation of China (Grant Nos. 41830969 and 41705052) and the Basic Scientific Research and Operation Foundation of CAMS (Grant No. 2018Z006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Congwen Zhu.

Additional information

Article Highlights

• In August–October 2019, East China experienced severe drought, with the lowest precipitation and highest temperature since 1960.

• Drought was naturally driven by the extremely warm CEP SST.

• Global warming has enhanced the probability of severe drought.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhu, C. & Liu, J. Combined Impacts of Warm Central Equatorial Pacific Sea Surface Temperatures and Anthropogenic Warming on the 2019 Severe Drought in East China. Adv. Atmos. Sci. 37, 1149–1163 (2020). https://doi.org/10.1007/s00376-020-0077-8

Download citation

Key words

  • drought
  • East China
  • central equatorial Pacific
  • SST
  • global warming
  • model simulations

关键词

  • 干旱
  • 长江中下游地区
  • 赤道中太平洋
  • 海表面温度
  • 全球变暖
  • 模式模拟